Skip to main content
Log in

Finite-key analysis of sending-or-not-sending twin-field quantum key distribution with intensity fluctuations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Sending-or-not sending twin-field quantum key distribution (SNS TF-QKD) removes the remaining security loopholes in original TF-QKD and can tolerate large misalignment errors. However, finite-key effects and intensity fluctuations of the photon sources would compromise its performance by lowering the secret key rate and then limiting the communication distance. In this paper, we present a method to estimate the lower bound of single-photon states yield for practical four-intensity decoy-state SNS TF-QKD. Based on this, we give a finite-key analysis without and with intensity fluctuations using improved Chernoff bound and Azuma’s inequality, respectively. Our simulation results show that both statistical and intensity fluctuations have a non-negligible effect on the performance of SNS TF-QKD and the effect of intensity fluctuations varies dramatically with different states. More precisely speaking, it is robust to the intensity fluctuations of the states with strong intensity while sensitive to the states with weak intensity. Our results emphasize that it is more significant to keep the stability of the weak states which could be modified in experiments with intensity modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  3. Xu, F., Ma, X., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 60 (2020)

    Article  MathSciNet  Google Scholar 

  4. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)

    Article  ADS  MATH  Google Scholar 

  5. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304 (2000)

    Article  ADS  Google Scholar 

  6. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon 4(10), 686 (2010)

    Article  ADS  Google Scholar 

  7. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)

    Article  ADS  Google Scholar 

  8. Li, H.W., Wang, S., Huang, J.Z., Chen, W., Yin, Z.Q., Li, F.Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.C., Bao, W.S., Han, Z.F.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84(6), 062308 (2011)

    Article  ADS  Google Scholar 

  9. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  10. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  11. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  12. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  13. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate—distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400 (2018)

    Article  ADS  Google Scholar 

  14. Takeoka, M., Guha, S., Wilde, M.M.: Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5(1), 5235 (2014)

    Article  ADS  Google Scholar 

  15. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8(1), 15043 (2017)

    Article  ADS  Google Scholar 

  16. Wang, X.B., Yu, Z.W., Hu, X.L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323 (2018)

    Article  ADS  Google Scholar 

  17. Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043 (2018)

    Google Scholar 

  18. Tamaki, K., Lo, H.K., Wang, W., Lucamarini, M.: Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound. arXiv:1805.05511 [quant-ph] (2018)

  19. Curty, M., Azuma, K., Lo, H.K.: Simple security proof of twin-field type quantum key distribution protocol. NPJ Quantum Inf. 5(1), 64 (2019)

    Article  ADS  Google Scholar 

  20. Cui, C., Yin, Z.Q., Wang, R., Chen, W., Wang, S., Guo, G.C., Han, Z.F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11(3), 034053 (2019)

    Article  ADS  Google Scholar 

  21. Jiang, C., Yu, Z.W., Hu, X.L., Wang, X.B.: Unconditional security of sending or not sending twin-field quantum key distribution with finite pulses. Phys. Rev. Appl. 12(2), 024061 (2019)

    Article  ADS  Google Scholar 

  22. Liu, Y., Yu, Z.W., Zhang, W., Guan, J.Y., Chen, J.P., Zhang, C., Hu, X.L., Li, H., Jiang, C., Lin, J., Chen, T.Y., You, L., Wang, Z., Wang, X.B., Zhang, Q., Pan, J.W.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123(10), 100505 (2019)

    Article  ADS  Google Scholar 

  23. Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhang, W., Hu, X.L., Guan, J.Y., Yu, Z.W., Xu, H., Lin, J., Li, M.J., Chen, H., Li, H., You, L., Wang, Z., Wang, X.B., Zhang, Q., Pan, J.W.: Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124(7), 070501 (2020)

    Article  ADS  Google Scholar 

  24. Yu, Z.W., Hu, X.L., Jiang, C., Xu, H., Wang, X.B.: Sending-or-not-sending twin-field quantum key distribution in practice. Sci. Rep. 9(1), 3080 (2019)

    Article  ADS  Google Scholar 

  25. Zhou, X.Y., Zhang, C.H., Zhang, C.M., Wang, Q.: Asymmetric sending or not sending twin-field quantum key distribution in practice. Phys. Rev. A 99(6), 062316 (2019)

    Article  ADS  Google Scholar 

  26. Hu, X.L., Jiang, C., Yu, Z.W., Wang, X.B.: Sending-or-not-sending twin-field protocol for quantum key distribution with asymmetric source parameters. Phys. Rev. A 100(6), 062337 (2019)

    Article  ADS  Google Scholar 

  27. Jiang, C., Yu, Z.W., Hu, X.L., Wang, X.B.: Sending-or-not-sending twin-filed quantum key distribution with discrete phase modulation. arXiv:2009.00816 [quant-ph] (2020)

  28. Qiao, Y., Chen, Z., Zhang, Y., Xu, B., Guo, H.: Sending-or-not-sending twin-field quantum key distribution with light source monitoring. Entropy 22(1), 36 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  29. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23(4), 493 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  30. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5(1), 3732 (2014)

    Article  ADS  Google Scholar 

  31. Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95(1), 012333 (2017)

    Article  ADS  Google Scholar 

  32. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. 19(3), 357 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Y., Bao, W.S., Zhou, C., Jiang, M.S., Li, H.W.: Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Phys. Rev. A 94(3), 032335 (2016)

    Article  ADS  Google Scholar 

  34. He, S.F., Wang, Y., Li, J.J., Bao, W.S.: Asymmetric twin-field quantum key distribution with both statistical and intensity fluctuations. Commun. Theor. Phys. 72(6), 065103 (2020)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Müller-Quade, J., Renner, R.: Composability in quantum cryptography. New J. Phys. 11(8), 085006 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  36. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3(1), 634 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project was supported by National Key Research and Development Program of China (2016YFA0302600) and National Natural Science Foundation of China (61675 235, 61605248 and 61505261).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Wang or Wan-Su Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, YF., Wang, Y., Jiang, MS. et al. Finite-key analysis of sending-or-not-sending twin-field quantum key distribution with intensity fluctuations. Quantum Inf Process 20, 135 (2021). https://doi.org/10.1007/s11128-021-03070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03070-8

Keywords

Navigation