Skip to main content
Log in

Quantum thermometry by single qubit-probe in a thermal XY spin-chain bath

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We address the estimation of temperature in a thermal XY spin-chain through quantum probe and tools of parameter estimation theory, namely the quantum Fisher information and signal to noise ratio. We focus on the situation where the probe is weakly coupled to the bath to ensure its coherent time-evolution as long as possible and, in turn, an accurate estimation of the bath temperature. Our results provide clear evidence that the estimation precision can be effectively improved by properly adjusting the probe–bath and bath-spins coupling strength. Indeed, we demonstrate that the optimum precision in the estimation of the bath temperature is achieved when the probe–bath and bath spins coupling strength are equals, leading to a long-time interaction of the probe with the bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 07, 125–137 (2009)

    Article  MATH  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  3. Braun, D., Adesso, G., Benatti, F., Floreanini, R., Marzolino, U., Mitchell, M.W., Pirandola, S.: Quantum-enhanced measurements without entanglement. Rev. Mod. Phys. 90, 035006 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proc. Natl. Acad. Sci. 112, 3866–3873 (2015)

    Article  ADS  Google Scholar 

  5. Hauke, P., Heyl, M., Tagliacozzo, L., Zoller, P.: Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys. 12, 778 (2016)

    Article  Google Scholar 

  6. Strobel, H., Muessel, W., Linnemann, D., Zibold, T., Hume, D.B., Pezzè, L., Oberthaler, M.K.: Fisher information and entanglement of non-gaussian spin states. Science 345, 424 (2014)

    Article  ADS  Google Scholar 

  7. Javed, M., Khan, S., Ullah, S.A.: Characterization of classical static noise via qubit as probe. Quantum Inf. Process. 17, 53 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Kenfack, L.T., Tchoffo, M., Fai, L.C.: Estimation of the disorder degree of the classical static noise using. Phys. Lett. A 383, 1123–1131 (2019)

    Article  ADS  Google Scholar 

  9. Paris, M.G.A.: Quantum probes for fractional Gaussian processes. Physica A 413, 256–265 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Rossi, M.A., Paris, M.G.A.: Entangled quantum probes for dynamical environmental noise. Phys. Rev. A 92, 010302 (2015)

    Article  ADS  Google Scholar 

  11. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Quantum probes for the spectral properties of a classical environment. Phys. Rev. A 89, 032114 (2014)

    Article  ADS  Google Scholar 

  12. Latune, C.L., Sinayskiy, I., Petruccione, F.: Quantum force estimation in arbitrary non-Markovian Gaussian baths. Phys. Rev. A 94, 052115 (2016)

    Article  ADS  Google Scholar 

  13. Benedetti, C., Sehdaran, F.S., Zandi, M.H., Paris, M.G.A.: Quantum probes for the cutoff frequency of Ohmic environments. Phys. Rev. A 97, 012126 (2018)

    Article  ADS  Google Scholar 

  14. Salari Sehdaran, F., Bina, M., Benedetti, C., Paris, M.G.A.: Quantum probes for Ohmic environments at thermal equilibrium. Entropy 21, 486 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Tamascelli, D., Benedetti, C., Breuer, H.P., Paris, M.G.: Quantum probing beyond pure dephasing. New J. Phys. 22, 083027 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zwick, A., Álvarez, G.A., Kurizki, G.: Criticality of environmental information obtainable by dynamically controlled quantum probes. Phys. Rev. A 94, 042122 (2016)

    Article  ADS  Google Scholar 

  17. Correa, L.A., Perarnau-Llobet, M., Hovhannisyan, K.V., Hernandez-Santana, S., Mehboudi, M., Sanpera, A.: Enhancement of low-temperature thermometry by strong coupling. Phys. Rev. A 96, 062103 (2017)

    Article  ADS  Google Scholar 

  18. Zwick, A., Álvarez, G.A., Kurizki, G.: Maximizing information on the environment by dynamically controlled qubit probes. Phys. Rev. Appl. 5, 014007 (2016)

    Article  ADS  Google Scholar 

  19. Hofer, P.P., Brask, J.B., Perarnau-Llobet, M., Brunner, N.: Quantum thermal machine as a thermometer. Phys. Rev. Lett. 119, 090603 (2017)

    Article  ADS  Google Scholar 

  20. Mehboudi, M., Sanpera, A., Correa, L.A.: Thermometry in the quantum regime: recent theoretical progress. J. Phys. A Math. Theor. 52, 303001 (2019)

    Article  MathSciNet  Google Scholar 

  21. Schwab, K., Henriksen, E.A., Worlock, J.M., Roukes, M.L.: Measurement of the quantum of thermal conductance. Nature 404, 974 (2000)

    Article  ADS  Google Scholar 

  22. Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010)

    Article  ADS  Google Scholar 

  23. Klinkert, B., Narberhaus, F.: Microbial thermosensors. Cell. Mol. Life Sci. 66, 2661 (2009)

    Article  Google Scholar 

  24. Schirhagl, R., Chang, K., Loretz, M., Degen, C.L.: Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83 (2014)

    Article  ADS  Google Scholar 

  25. Gemmer, J., Michel, M., Mahler, G.: Quantum Thermodynamics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  26. Campisi, M., Hänggi, P., Talkner, P.: Rev. Mod. Phys. 83, 771 (2011). Erratum: Rev. Mod. Phys. Quantum fluctuation relations: Foundations and applications 83, 1653 (2011)

  27. Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013)

    Article  ADS  Google Scholar 

  28. Carrega, M., Solinas, P., Braggio, A., Sassetti, M., Weiss, U.: Functional integral approach to time-dependent heat exchange in open quantum systems: general method and applications. New J. Phys. 17, 045030 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Carrega, M., Solinas, P., Braggio, A., Sassetti, M., Weiss, U.: Energy exchange in driven open quantum systems at strong coupling. Phys. Rev. Lett. 116, 240403 (2016)

    Article  ADS  Google Scholar 

  30. Boyd, R.: Nonlinear Optics. Academic Press, Cambridge (2008)

    Google Scholar 

  31. Williams, N.S., Le Hur, K., Jordan, A.N.: Effective thermodynamics of strongly coupled qubits. J. Phys. A Math. Theor. 44, 385003 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kliesch, M., Gogolin, C., Kastoryano, M.J., Riera, A., Eisert, J.: Locality of Temperature

  33. Millen, J., Xuereb, A.: New J. Phys. 18, 011002 (2016). Perspective on quantum thermodynamics. Phys. Rev. X 4, 031019 (2014)

  34. Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Contemp. Phys. 57, 545 (2016)

    Article  ADS  Google Scholar 

  35. Kenfack, L.T., Tchoffo, M., Gueagni, W.D.W., Fai, L.C.: Temperature estimation in a quantum spin bath through entangled and separable two-qubit probes. Eur. Phys. J. Plus 136, 220 (2021)

    Article  Google Scholar 

  36. Mohr, P.J., Taylor, N.: CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod. Phys. 77, 1 (2005)

    Article  ADS  Google Scholar 

  37. Weng, W., Anstie, J.D., Stace, T.M., Campbell, G., Baynes, F.N., Luiten, A.N.: Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit. Phys. Rev. Lett. 112, 160801 (2014)

    Article  ADS  Google Scholar 

  38. Razavian, S., Benedetti, C., Bina, M., Akbari-Kourbolagh, Y., Paris, M.G.A.: Quantum thermometry by single-qubit dephasing. Eur. Phys. J. Plus. 134, 284 (2019)

    Article  Google Scholar 

  39. Rangani Jahromi, H.: Quantum thermometry in a squeezed thermal bath. Phys. Scr. 95, 035107 (2020)

    Article  Google Scholar 

  40. Gebbia, F., Benedetti, C., Benatti, F., Floreanini, R., Bina, M., Paris, M.G.A.: Two-qubit quantum probes for the temperature of an Ohmic environment. Phys. Rev. A 101, 032112 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. Seveso, L., Paris, M.G.A.: Trade-off between information and disturbance in qubit thermometry. Phys. Rev. A 97, 032129 - Published 28 March 2018

  42. Yuan, X.-Z., Zhu, K.-D., Goan, H.-S.: The dynamics of a central spin in quantum Heisenberg XY Model. Eur. Phys. J. D 46, 375–380 (2008)

    Article  ADS  Google Scholar 

  43. Yuan, X.-Z., Goan, H.-S., Zhu, K.-D.: Non-Markovian reduced dynamics and entanglement evolution of two coupled spins in a quantum spin environment. Phys. Rev. B 75, 045331 (2007)

    Article  ADS  Google Scholar 

  44. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  45. Dittmann, J.: Explicit formulae for the Bures metric. J. Phys. A 32, 2663–2670 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Tenemeza Kenfack.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenfack, L.T., Gueagni, W.D.W., Tchoffo, M. et al. Quantum thermometry by single qubit-probe in a thermal XY spin-chain bath. Quantum Inf Process 20, 144 (2021). https://doi.org/10.1007/s11128-021-03075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03075-3

Keywords

Navigation