Skip to main content
Log in

Multi-mode plug-and-play dual-phase-modulated continuous-variable quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a multi-mode plug-and-play dual-phase-modulated continuous-variable (CV) quantum key distribution (QKD) protocol where Bob prepares independent and identically distributed dual-phase-modulated coherent states in multiple independent modes and Alice uses a conventional noisy, coherent detector to perform homodyne detection. Benefiting from the plug-and-play configuration, our protocol waives the necessity of propagation of a local oscillator (LO) between trusted parties and generates a real local LO for coherent detection. Therefore, the proposed protocol can effectively against the LO-aimed attacks. Moreover, we obtain enhancement in signal-to-noise ratio thanks to multi-mode coherent states. Simulation results show the performance of our protocol outperforms that of the single-mode plug-and-play dual-phase-modulated CV-QKD protocol. In addition, the performance of the proposed scheme is enhanced with the increased signal modes. Furthermore, we take the finite-size effect and composable security into consideration and thus obtain more practical results than those achieved in the asymptotic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595 (2014)

    Article  ADS  Google Scholar 

  2. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.: Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012 (2020)

    Article  Google Scholar 

  3. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400 (2018)

    Article  ADS  Google Scholar 

  4. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  5. Liang, L.M., Sun, S.H., Jiang, M.S., Li, C.Y.: Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices. Front. Phys. 9(5), 613 (2014)

    Article  ADS  Google Scholar 

  6. Xu, F.H., Ma, X.F., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  8. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  9. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238 (2003)

    Article  ADS  Google Scholar 

  10. Navascués, M., Grosshans, F., Acin, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97(19), 190502 (2006)

    Article  ADS  Google Scholar 

  11. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)

    Article  ADS  Google Scholar 

  12. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2011)

    Article  ADS  Google Scholar 

  13. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114(7), 070501 (2015)

    Article  ADS  Google Scholar 

  14. Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)

    Article  ADS  Google Scholar 

  15. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)

    Article  ADS  Google Scholar 

  16. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110(3), 030502 (2013)

    Article  ADS  Google Scholar 

  17. Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118(20), 200501 (2017)

    Article  ADS  Google Scholar 

  18. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6(1), 19201 (2016)

    Article  ADS  Google Scholar 

  19. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7(5), 378 (2013)

    Article  ADS  Google Scholar 

  20. Zhang, Y., Li, Z., Chen, Z., Weedbrook, C., Zhao, Y., Wang, X., Huang, Y., Xu, C., Zhang, X., Wang, Z., Wang, G., Yu, S., Guo, H.: Continuous-variable QKD over 50km commercial fiber. Quantum Sci. Technol. 4(3), 035006 (2019)

    Article  ADS  Google Scholar 

  21. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76(5), 052323 (2007)

    Article  ADS  Google Scholar 

  22. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87(6), 062313 (2013)

    Article  ADS  Google Scholar 

  23. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88(2), 022339 (2013)

    Article  ADS  Google Scholar 

  24. Qi, B., Lougovski, P., Pooser, R., Grice, W., Bobrek, M.: Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5(4), 041009 (2015)

    Google Scholar 

  25. Soh, D.B., Brif, C., Coles, P.J., Lütkenhaus, N., Camacho, R.M., Urayama, J., Sarovar, M.: Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X 5(4), 041010 (2015)

    Google Scholar 

  26. Huang, D., Huang, P., Lin, D., Wang, C., Zeng, G.: High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 40(16), 3695–3698 (2015)

    Article  ADS  Google Scholar 

  27. Wu, X., Wang, Y., Guo, Y., Zhong, H., Huang, D.: Passive continuous-variable quantum key distribution using a locally generated local oscillator. Phys. Rev. A 103(3), 032604 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wu, X., Wang, Y., Huang, D.: Passive continuous-variable quantum secret sharing using a thermal source. Phys. Rev. A 101(2), 022301 (2020)

    Article  ADS  Google Scholar 

  29. Grice, W.P., Qi, B.: Quantum secret sharing using weak coherent states. Phys. Rev. A 100(2), 022339 (2019)

    Article  ADS  Google Scholar 

  30. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9(6), 397 (2015)

    Article  ADS  Google Scholar 

  31. Zhang, Y.C., Li, Z., Yu, S., Gu, W.Y., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)

    Article  ADS  Google Scholar 

  32. Li, Z., Zhang, Y., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052301 (2014)

    Article  ADS  Google Scholar 

  33. Wu, X.D., Wang, Y.J., Huang, D., Guo, Y.: Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation. Front. Phys. 15(3), 31601 (2020)

    Article  ADS  Google Scholar 

  34. Liao, Q., Wang, Y., Huang, D., Guo, Y.: Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution. Opt. Express 26(16), 19907 (2018)

    Article  ADS  Google Scholar 

  35. Wu, X., Wang, Y., Li, S., Zhang, W., Huang, D., Guo, Y.: Security analysis of passive measurement-device-independent continuous-variable quantum key distribution with almost no public communication. Quantum Inf. Process. 18(12), 372 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. Huang, D., Huang, P., Wang, T., Li, H., Zhou, Y., Zeng, G.: Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol. Phys. Rev. A 94(3), 032305 (2016)

    Article  ADS  Google Scholar 

  37. Wu, X., Wang, Y., Liao, Q., Zhong, H., Guo, Y.: Simultaneous classical communication and quantum key distribution based on plug-and-play configuration with an optical amplifier. Entropy 21(4), 333 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. Bai, D., Huang, P., Ma, H., Wang, T., Zeng, G.: Performance improvement of plug-and-play dual-phase-modulated quantum key distribution by using a noiseless amplifier. Entropy 19(10), 546 (2017)

    Article  ADS  Google Scholar 

  39. Wu, X.D., Wang, Y.J., Zhong, H., Liao, Q., Guo, Y.: Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys. 14(4), 41501 (2019)

    Article  ADS  Google Scholar 

  40. Wu, X., Wang, Y., Zhong, H., Ye, W., Huang, D., Guo, Y.: Performance improvement of plug-and-play dual-phase-modulated continuous-variable quantum key distribution with quantum catalysis. Quantum Inf. Process. 19(8), 234 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. Kumar, R., Tang, X., Wonfor, A., Penty, R., White, I.: Continuous variable quantum key distribution with multi-mode signals for noisy detectors. J. Opt. Soc. Am. B 36(3), B109 (2019)

    Article  Google Scholar 

  42. Fang, J., Huang, P., Zeng, G.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89(2), 022315 (2014)

    Article  ADS  Google Scholar 

  43. Usenko, V.C., Ruppert, L., Filip, R.: Entanglement-based continuous-variable quantum key distribution with multimode states and detectors. Phys. Rev. A 90(6), 062326 (2014)

    Article  ADS  Google Scholar 

  44. Derkach, I., Usenko, V.C., Filip, R.: Continuous-variable quantum key distribution with a leakage from state preparation. Phys. Rev. A 96(6), 062309 (2017)

    Article  ADS  Google Scholar 

  45. Qu, Z., Djordjevic, I.B.: High-speed free-space optical continuous-variable quantum key distribution enabled by three-dimensional multiplexing. Opt. Express 25(7), 7919 (2017)

    Article  ADS  Google Scholar 

  46. Qu, Z., Djordjevic, I.B.: Four-dimensionally multiplexed eight-state continuous-variable quantum key distribution over turbulent channels. IEEE Photon. J. 9(6), 7600408 (2017)

    Article  Google Scholar 

  47. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8(1), 15043 (2017)

    Article  ADS  Google Scholar 

  48. Kumar, R., Qin, H., Alléaume, R.: Coexistence of continuous variable QKD with intense DWDM classical channels. New J. Phys. 17(4), 043027 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61801522) and National Nature Science Foundation of Hunan Province, China (Grant No. 2019JJ40352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculation of asymptotic secret key rate of multi-mode plug-and-play DPMCS protocol

We now perform the calculation of asymptotic secret key rate of our multi-mode plug-and-play DPMCS protocol. In the case of reverse reconciliation, the asymptotic secret key rate under collective attack is given by

$$\begin{aligned} K^{n}_{asy}=\beta I^{n}(A:B)-\chi (A:E), \end{aligned}$$
(8)

where \(I^{n}(A:B)=\frac{1}{2}\mathrm{log}_{2}(1+\mathrm{SNR}_{n})\) represents the mutual information between Alice and Bob and \(\mathrm{SNR}_{n}\) has been analyzed in Eq. (6), \(\chi (A:E)\) represents the maximum information available to Eve on Alice’s key, and \(\beta \) represents the efficiency of the reconciliation algorithm.

The channel transmittance is described as \(T=10^{\frac{-\gamma d}{10}}\) under the assumption that the quantum channel between Alice and Bob is telecom fiber, parameters \(\gamma \) and d stand for an attenuation coefficient and the fiber length in kilometers, respectively.

In order to estimate \(\chi (A:E)\), the realistic noise model is adopted where Eve cannot control the loss inside Alice’s system, and the detector noise from Alice can be deemed to be trusted [9], which has been utilized widely in CV-QKD experiments [19, 21, 48]. Based on this model, \(\chi (A:E)\) can be given by

$$\begin{aligned} \chi (A:E)=\sum ^{2}_{i=1}G(\frac{\lambda _{i}-1}{2})-\sum ^{5}_{i=3}G(\frac{\lambda _{i}-1}{2}), \end{aligned}$$
(9)

where \(G(x)=(x+1)\mathrm{log}_{2}(x+1)-x\mathrm{log}_{2}x\).

$$\begin{aligned} \lambda ^{2}_{1,2}=\frac{1}{2}[\varDelta \pm \sqrt{\varDelta ^{2}-4D}], \end{aligned}$$
(10)

where

$$\begin{aligned} \varDelta&=V^{2}(1-2T)+2T+T^{2}(V+\chi _{\mathrm{line}})^{2}, \nonumber \\ D&=T^{2}(V\chi _{\mathrm{line}}+1)^{2}. \end{aligned}$$
(11)
$$\begin{aligned} \lambda ^{2}_{3,4}&=\frac{1}{2}[A \pm \sqrt{A^{2}-4B}], \end{aligned}$$
(12)

where

$$\begin{aligned} A&=\frac{1}{T(V+\chi _{\mathrm{tot}})}[\varDelta \chi _{\mathrm{hom}}+V\sqrt{D}+T(V+\chi _{\mathrm{line}})],\nonumber \\ B&=\frac{\sqrt{D}V+D\chi _{\mathrm{hom}}}{T(V+\chi _{\mathrm{tot}})}, \end{aligned}$$
(13)
$$\begin{aligned} \lambda _{5}&=1. \end{aligned}$$
(14)

Appendix B: Finite-size secret key rate of multi-mode plug-and-play DPMCS protocol

For the proposed multi-mode plug-and-play DPMCS protocol, the finite-size secret key rate is given by

$$\begin{aligned} K^{n}_{fini}=\frac{m}{M}[\beta I^{n}(A:B)-\chi _{\epsilon _{\mathrm{PE}}}(A:E)-\varDelta (m)] \end{aligned}$$
(15)

where \(\beta \) and \(I^{n}(A:B)\) have been defined above. m represents the number of signals which is utilized to share key between Alice and Bob and M represents the total exchanged signals. Then, the remained signals \(h=M-m\) is utilized to perform parameter estimation. \(\epsilon _{\mathrm{PE}}\) denotes the failure probability of parameter estimation. Parameter \(\varDelta (m)\) is related to the security of the privacy amplification, which is given by

$$\begin{aligned} \varDelta (m)=(2\mathrm{dim}\varPi _{A}+3)\sqrt{\frac{\mathrm{log}_{2}(2/\bar{\epsilon })}{m}}+\frac{2}{m}\mathrm{log}_{2}(1/\epsilon _{\mathrm{PA}}), \end{aligned}$$
(16)

where \(\bar{\epsilon }\) stands for the smoothing parameter, \(\epsilon _{\mathrm{PA}}\) stands for the failure probability of privacy amplification, and the Hilbert space corresponding to the Alice’s raw key is represented by \(\mathrm{dim}\varPi _{A}\). Here, \(\mathrm{dim}\varPi _{A}\) is set to be 2 due to that the raw key is usually encoded on binary bits.

Note that it is necessary to compute \(\chi _{\epsilon _{\mathrm{PE}}}(A:E)\) in parameter estimation procedure with the help of the covariance matrix \(\varXi _{\epsilon _{\mathrm{PE}}}\). This covariance matrix can minimize the finite-size secret key rate with a probability of \(1-\epsilon _{\mathrm{PE}}\). By using h couples of correlated variables \((x_{j},y_{j})_{j=1\ldots h}\), we can calculate the covariance matrix \(\varXi _{\epsilon _{\mathrm{PE}}}\). Consequently, we need to sample h couples of correlated variables \((x_{j},y_{j})_{j=1\ldots h}\) and use a normal model for these correlated variables to link Alice’s and Bob’s data, which is given by

$$\begin{aligned} y=\delta x+z, \end{aligned}$$
(17)

where \(\delta =\sqrt{T}\) and z follows a centered normal distribution with variance \(\omega ^{2}=1+T\xi _{t}\). Then, the covariance matrix \(\varXi _{\epsilon _{\mathrm{PE}}}\) can be expressed as

$$\begin{aligned} \varXi _{\epsilon _{\mathrm{PE}}}=\left( \begin{array}{cc} (V_{B}+1)I_{2} &{} \delta _{\mathrm{min}}Z\sigma _{z} \\ \delta _{\mathrm{min}}Z\sigma _{z}&{} (\delta ^{2}_{\mathrm{min}}V_{B}+\omega ^{2}_{\mathrm{max}})I_{2}\\ \end{array} \right) , \end{aligned}$$
(18)

where \(\delta _{\mathrm{min}}\) and \(\omega ^{2}_{\mathrm{max}}\) represent the minimum of \(\delta \) and maximum of \(\omega ^{2}\) compatible with sampled couples except with probability \(\epsilon _{\mathrm{PE}}/2\), and \(Z=\sqrt{V^{2}_{B}+2V_{B}}\). Then, the Maximum-likelihood estimators \(\hat{\delta }\) and \(\hat{\omega }^{2}\) are, respectively, given by

$$\begin{aligned} \hat{\delta }=\frac{\sum ^{h}_{j=1}x_{j}y_{j}}{\sum ^{h}_{j=1}x^{2}_{j}} \quad and \quad \hat{\omega }^{2}=\frac{1}{h}\sum ^{h}_{j=1}(y_{j}-\hat{\delta }x_{j})^{2}. \end{aligned}$$
(19)

Besides, \(\hat{\delta }\) and \(\hat{\omega }^{2}\) follow the distributions

$$\begin{aligned} \hat{\delta }\sim N(\delta ,\frac{\omega ^{2}}{\sum ^{h}_{j=1}x^{2}_{j}}) \quad and \quad \frac{h\hat{\omega }^{2}}{\omega ^{2}}\sim \chi ^{2}(h-1), \end{aligned}$$
(20)

which indicates that \(\hat{\delta }\) and \(\hat{\omega }^{2}\) are independent for each other. Because parameters \(\delta \) and \(\omega ^{2}\) shown in Eq. (20) are true values, we can write the expressions of \(\hat{\delta }\) and \(\hat{\omega }^{2}\), which are

$$\begin{aligned} \begin{aligned} \delta _{\mathrm{min}}&\approx \hat{\delta }-z_{\epsilon _{\mathrm{PE}}/2}\sqrt{\frac{\hat{\omega }^{2}}{hV_{B}}}, \\ \omega ^{2}_{\mathrm{max}}&\approx \hat{\omega }^{2}+z_{\epsilon _{\mathrm{PE}}/2} \frac{\sqrt{2} \hat{\omega }^{2}}{\sqrt{h}}, \end{aligned} \end{aligned}$$
(21)

where \(z_{\epsilon _{\mathrm{PE}}/2}\) is such that \(1-erf(z_{\epsilon _{\mathrm{PE}}/2}/\sqrt{2})/2=\epsilon _{\mathrm{PE}}/2\), and \(erf(x)=\frac{2}{\sqrt{\pi }}\int ^{x}_{0}e^{-t^{2}}dt\) represents error function. Based on the expected values of \(\hat{\delta }\) and \(\hat{\omega }^{2}\), which are given by \(E[\hat{\delta }]=\sqrt{T}\) and \(E[\hat{\omega }^{2}]=1+T\xi _{t}\), \(\hat{\delta }\) and \(\hat{\omega }^{2}\) are expressed as

$$\begin{aligned} \begin{aligned} \delta _{\mathrm{min}}&\approx \sqrt{T}-z_{\epsilon _{\mathrm{PE}}/2}\sqrt{\frac{1+T\xi _{t}}{hV_{B}}}, \\ \omega ^{2}_{\mathrm{max}}&\approx 1+T\xi _{t}+z_{\epsilon _{\mathrm{PE}}/2} \frac{\sqrt{2}(1+T\xi _{t})}{\sqrt{h}}. \end{aligned} \end{aligned}$$
(22)

It is noteworthy that we can choose the optimal value of the error probabilities as

$$\begin{aligned} \bar{\epsilon }=\epsilon _{\mathrm{PE}}=\epsilon _{\mathrm{PA}}=10^{-10}. \end{aligned}$$
(23)

Therefore, we can obtain the finite-size secret key rate of multi-mode plug-and-play DPMCS protocol by utilizing the derived bound \(\delta _{\mathrm{min}}\) and \(\omega ^{2}_{\mathrm{max}}\).

Appendix C: Multi-mode plug-and-play DPMCS protocol in composable security

Here, we calculate the secret key rate of the proposed multi-mode plug-and-play DPMCS protocol in composable security framework. According to Ref. [13], the proposed multi-mode plug-and-play DPMCS protocol is \(\epsilon \)-secure against collective attacks if \(\epsilon =2\epsilon _{sm}+\bar{\epsilon }+\epsilon _{\mathrm{PE}}/\epsilon +\epsilon _{\mathrm{cor}}/\epsilon +\epsilon _{\mathrm{ent}}/\epsilon \) and if the length of final key m is chosen such that

$$\begin{aligned} m\le 2M \hat{H}_{\mathrm{MLE}}(U)-MF(\varTheta ^{\mathrm{max}}_{a}, \varTheta ^{\mathrm{max}}_{b}, \varTheta ^{\mathrm{max}}_{c})-\mathrm{leak}_{\mathrm{EC}}-\varDelta _{\mathrm{AEP}}-\varDelta _{\mathrm{ent}}-2\mathrm{log}\frac{1}{2\bar{\epsilon }}, \end{aligned}$$
(24)

where \(\hat{H}_{\mathrm{MLE}}(U)\) represents the empiric entropy of U, \(F(\varTheta ^{\mathrm{max}}_{a}, \varTheta ^{\mathrm{max}}_{b}, \varTheta ^{\mathrm{max}}_{c})\) stands for the function computing the Holevo information between Eve and Alice, and

$$\begin{aligned}&\varDelta _{\mathrm{AEP}}=\sqrt{2m}[(d_{0}+1)^{2}+4(d_{0}+1)\mathrm{log}_{2}(2/\epsilon ^{2}_{sm})+2\mathrm{log}_{2}(2/\epsilon ^{2}\epsilon _{sm})]+4\epsilon _{sm}d_{0}/\epsilon , \end{aligned}$$
(25)
$$\begin{aligned}&\varDelta _{\mathrm{ent}}=\mathrm{log}_{2}(1/\epsilon )+\sqrt{4m \mathrm{log}^{2}_{2}(2m)\mathrm{log}(2/\epsilon _{sm})}. \end{aligned}$$
(26)

In the following, we analyze the secret key rate of the multi-mode plug-and-play DPMCS protocol in composable security framework. The following model is taken advantage of for the error correction

$$\begin{aligned} \beta I^{n}(A:B)=2\hat{H}_{\mathrm{MLE}}(U)-\frac{1}{2m}\mathrm{leak}_{\mathrm{EC}}, \end{aligned}$$
(27)

where \(\beta \) represents reconciliation efficiency and \(I^{n}(A:B)\) stands for the mutual information between Alice and Bob in multi-mode plug-and-play DPMCS protocol. For our protocol, we have

$$\begin{aligned} I^{n}(A:B)&=\frac{1}{2}\mathrm{log}_{2}(1+\mathrm{SNR}_{n}) \end{aligned}$$
(28)
$$\begin{aligned}&=\frac{1}{2}\mathrm{log}_{2}\left[ 1+\frac{V_{B}}{1+\chi _{\mathrm{tot}}/n+(\psi +\xi )(n-1)/n}\right] . \end{aligned}$$
(29)

What is more, the robustness of our protocol is chosen \(\epsilon _{\mathrm{rob}}\le 10^{-2}\), which can be achieved when the probability of parameter estimation is at least 0.99. Based on this, the values of random variables ||X||, ||Y|| and \(\langle X,Y\rangle \) satisfy the following restraints

$$\begin{aligned} ||X||^{2}&\le 2m (V_{B}+1)+3\sqrt{4m (V_{B}+1)}, \end{aligned}$$
(30)
$$\begin{aligned} ||Y||^{2}&\le 2m (V^{n}_{A}+1)+3\sqrt{4m (V^{n}_{A}+1)},\end{aligned}$$
(31)
$$\begin{aligned} \langle X,Y\rangle&\ge 2m C^{n}_{BA}-3\sqrt{m(V_{B}-1)(\eta T \chi _{\mathrm{tot}}/n+1)}, \end{aligned}$$
(32)

where \(C^{n}_{BA}\) represents the correlation between Bob’s and Alice’s data after channel in our protocol. Using these bound, we can achieve

$$\begin{aligned} \varTheta ^{\mathrm{max}}_{a}&=\frac{1}{M}[1+2\sqrt{\frac{\mathrm{log}(36/\epsilon _{\mathrm{PE}})}{m}}]||X||^{2}-1,\end{aligned}$$
(33)
$$\begin{aligned} \varTheta ^{\mathrm{max}}_{b}&=\frac{1}{M}[1+2\sqrt{\frac{\mathrm{log}(36/\epsilon _{\mathrm{PE}})}{m}}]||Y||^{2}-1,\end{aligned}$$
(34)
$$\begin{aligned} \varTheta ^{\mathrm{max}}_{c}&=\frac{1}{M}\langle X,Y\rangle -5\sqrt{\frac{\mathrm{log}(8/\epsilon _{\mathrm{PE}})}{m^{3}}}(||X||^{2}+||Y||^{2}). \end{aligned}$$
(35)

Finally, the secret key rate of our protocol can be calculated in composable security framework as follows:

$$\begin{aligned} K^{n}_{comp}=(1-\epsilon _{\mathrm{rob}})[\beta I^{n}(A:B)-F(\varTheta ^{\mathrm{max}}_{a}, \varTheta ^{\mathrm{max}}_{b}, \varTheta ^{\mathrm{max}}_{c})-\frac{1}{M}(\varDelta _{\mathrm{AEP}}+\varDelta _{\mathrm{ent}}+2\mathrm{log}_{2} \frac{1}{2\bar{\epsilon }})]. \end{aligned}$$
(36)

It is worth mentioning that the parameters shown above are set

$$\begin{aligned} \epsilon _{sm}=\bar{\epsilon }=10^{-21}, \epsilon _{\mathrm{PE}}=\epsilon _{\mathrm{cor}}=\epsilon _{\mathrm{ent}}=10^{-41} \end{aligned}$$
(37)

in order to be \(\epsilon \) secure against collective attacks with \(\epsilon =10^{-20}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Y., Huang, D. et al. Multi-mode plug-and-play dual-phase-modulated continuous-variable quantum key distribution. Quantum Inf Process 20, 143 (2021). https://doi.org/10.1007/s11128-021-03076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03076-2

Keywords

Navigation