Skip to main content
Log in

Novel two-party quantum private comparison via quantum walks on circle

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum private comparison aims to make the size comparison of two participants’ private information without leaking the private data of their own with quantum mechanism. In this paper, different from the current method of using single particle or entangled state as the information carrier, a novel two-party quantum private comparison protocol is firstly proposed via quantum walks on circle. In the protocol, a third party is assumed to be semi-honest and allowed to misbehave on his own, but cannot conspire with either of the two dishonest participants and obtain the participants’ private information. The protocol adopts the two-particle quantum walks state on circle rather than entangled state as the initial quantum resource and only needs measurement and quantum walks operator without the unitary operation and quantum entanglement swapping. The two-particle state is transferred as a whole among different parties, which reduces the protocol complexity and avoids the chance of being attacked. It can implement the equality comparison of private information, but also the size comparison. Security analyses show that this protocol is resistant to the external and internal malicious attacks, which can also determine the disputes over the judgment result of the third party. Compared with other quantum private comparison protocols, the proposed protocol has better flexibility and universality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), Chicago, IL, USA, 1982, pp. 160–164

  2. Arute, F., Arya, K., Babbush, R., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–511 (2019)

    Article  ADS  Google Scholar 

  3. Qiang, X.G., Zhou, X.Q., Aungskunsiri, K., et al.: Quantum processing by remote quantum control. Quantum Sci. Technol. 2, 045002 (2017)

    Article  ADS  Google Scholar 

  4. Long, G.L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45(5), 825–844 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  6. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  8. Yang, Y.G., Xia, J., Jia, X., et al.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10(06), 1250065 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, W., Wen, Q.Y., Lin, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China-Phys. Mech. 56(9), 1670–1678 (2013)

    Article  Google Scholar 

  10. Yu, C.H., Guo, G.D., Lin, S.: Quantum private comparison with d-level single-particle states. Phys. Scr. 88(6), 065013 (2013)

    Article  ADS  Google Scholar 

  11. Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16(7), 180 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Pan, H.M.: Two-party quantum private comparison using single photons. Int. J. Theor. Phys. 57, 3389–3395 (2018)

    Article  MATH  Google Scholar 

  13. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quantum Inf. 11(04), 1350039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semihonest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Guo, F.Z., Gao, F., Qin, S.J., et al.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Zhang, W.W., Li, D., Zhang, K.J., Zuo, H.J.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 13(6), 2241–2249 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Liu, W.J., Liu, C., Chen, H.W., et al.: Cryptanalysis and improvement of quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 62(2), 210–214 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Tan, X.Q., Zhang, X.Q., Li, J.: Big data quantum private comparison with the intelligent third party. J. Ambient Intell. Hum. Comput. 6(6), 797–806 (2015)

    Article  Google Scholar 

  23. Wang, F., Luo, M., Li, H., et al.: Quantum private comparison based on quantum dense coding. Sci. China-Inf. Sci. 59(11), 112501 (2016)

    Article  Google Scholar 

  24. Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  25. Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)

    Article  ADS  Google Scholar 

  26. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)

    Article  ADS  Google Scholar 

  27. Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  29. Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W States. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)

    Article  Google Scholar 

  30. Xu, G.A., Chen, X.B., Wei, Z.H., et al.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quantum Inf. 10(4), 1250045 (2012)

    Article  MathSciNet  Google Scholar 

  31. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, C.Y., Chen, X.B., Li, H., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18(5), 158 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  33. Liu, W., Wang, Y.B., Jiang, Z.T., et al.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jia, H.Y., Wen, Q.Y., Li, Y.B., Cao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, W., Wang, Y.B., Jiang, Z.T., et al.: New quantum private comparison protocol using \(\chi \)-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with \(\chi \)-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pan, H.M.: Quantum private comparison based on \(\chi \)-type entangled states. Int. J. Theor. Phys. 56(10), 3340–3347 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ji, Z.X., Fan, P.R., Zhang, H.G., Wang, H.Z.: Several two-party protocols for quantum private comparison using entanglement and dense coding. Opt. Commun. 459(15), 124911 (2020)

    Article  Google Scholar 

  40. Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Ji, Z.X., Zhang, H.G., Wang, H.Z.: Quantum private comparison protocols with a number of multi-particle entangled states. IEEE Access 7, 44613–44621 (2019)

    Article  Google Scholar 

  43. Liu, W., Wang, Y.B.: Dynamic multi-party quantum private comparison protocol with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55(12), 5307–5317 (2016)

    Article  MATH  Google Scholar 

  44. Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf. Process. 17(10), 252 (2018)

    Article  ADS  MATH  Google Scholar 

  45. Du, G., Zhang, F., Ma, C.G.: A new multi-party quantum private comparison protocol based on circle model. Int. J. Theor. Phys. 58, 3225–3233 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Song, X.L., Wen, A.J., Gou, R.: Multiparty quantum private comparison of size relation based on single-particle states. IEEE Access 7, 142507–142514 (2019)

    Article  Google Scholar 

  47. Abulkasim, H., Alsuqaih, H.N., Hamdan, W.F., Hamad, S., et al.: Improved dynamic multi-party quantum private comparison for next-generation mobile network. IEEE Access 7, 17917–17926 (2019)

    Article  Google Scholar 

  48. Liu, W., Wang, Y.B., Wang, X.M.: Quantum multi-party private comparison protocol using d-dimensional Bell states. Int. J. Theor. Phys. 54(6), 1830–1839 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ye, T.Y.: Multi-party quantum private comparison protocol based on entanglement swapping of Bell entangled states. Commun. Theor. Phys. 66(3), 280–290 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level Cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Ye, T.Y., Ji, Z.X.: Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China-Phys. Mech. Astron. 60(9), 090312 (2017)

    Article  ADS  Google Scholar 

  52. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using GHZ states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016)

    Article  MATH  Google Scholar 

  54. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14, 4225–4235 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Luo, Q.B., Yang, G.W., She, K., et al.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)

    Article  ADS  Google Scholar 

  60. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  61. Ambainis, A.: Quantum walk algorithm for element distinctness. In: 45th Annual IEEE Symposium on Foundations of Computer Science, Rome, Italy, pp. 22–31 (2004)

  62. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Tamascelli, D., Zanetti, L.: A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J. Phys. A-Math. Theor. 47(32), 3025302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Chakraborty, S., Novo, L., Giorgio, S.D., Omar, Y.: Optimal quantum spatial search on random temporal networks. Phys. Rev. Lett. 119(22), 220503 (2017)

    Article  ADS  Google Scholar 

  65. Yang, Y.G., Yang, J.J., Zhou, Y.H., et al.: Quantum network communication: a discrete-time quantum-walk approach. Sci. China-Inf. Sci. 61(4), 042501 (2018)

    Article  MathSciNet  Google Scholar 

  66. Kurzyński, P., Wójcik, A.: Quantum walk as a generalized measuring device. Phys. Rev. Lett. 110(20), 200404 (2013)

    Article  ADS  Google Scholar 

  67. Zhan, X., Qin, H., Bian, Z.H., et al.: Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys. Rev. A 90(1), 012331 (2014)

    Article  ADS  Google Scholar 

  68. Yalccinkaya, I., Gedik, Z.: Qubit state transfer via discrete-time quantum walks. J. Phys. A: Math. Theor. 48(22), 225302 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Babatunde, A.M., Cresser, J., Twamley, J.: Using a biased quantum random walk as a quantum lumped element router. Phys. Rev. A 90(1), 124–129 (2014)

    Article  Google Scholar 

  70. Vlachou, C., Rodrigues, J., Mateus, P., et al.: Quantum walk public-key cryptographic system. Int. J. Quantum Inf. 13(07), 1550050 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  71. Vlachou, C., Krawec, W., Mateus, P., et al.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Li, H.J., Jian, J., Xiang, N., et al.: A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks. Quantum Inf. Process. 18(10), 316 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  73. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16(9), 221 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Yang, Y.G., Cao, S.N., Chao, W.F., et al.: Generalized teleportation by means of discrete-time quantum walks on N-lines and N-cycles. Mod. Phys. Lett. B 33(06), 1950070 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  75. Gnutzmann, S., Smilansky, U.: Quantum graphs: applications to quantum chaos and universal spectral statistics. Adv. Phys. 55(5–6), 527–625 (2006)

    Article  ADS  Google Scholar 

  76. Gao, F., Gao, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “experimental demonstration of a quantum protocol for byzantine agreement and liar detection’’. Phys. Rev. Lett. 101(20), 208901 (2008)

    Article  ADS  Google Scholar 

  77. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus n-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561–1563 (2008)

    Article  ADS  Google Scholar 

  78. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  79. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  80. Li, C.Y., Li, X.H., Deng, F.G., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    Article  ADS  Google Scholar 

  81. Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19 (2007)

    Article  ADS  Google Scholar 

  82. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(04), 040305 (2013)

    Article  ADS  Google Scholar 

  83. Gao, G., Wang, L.P.: A protocol for bidirectional quantum secure communication based on genuine four-particle entangled states. Commun. Theor. Phys. 54(3), 447–451 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Xiu, X.M., Dong, H.K., Dong, L., et al.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282(12), 2457–2459 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by University Natural Science Research Project of Anhui Province of China (Grant Nos. KJ2019A0580, KJ2019A0562), National Natural Science Foundation of China (Grant Nos. 11975025, 11701009) and Natural Science Foundation of Anhui Province of China (Grant No. 1708085MA10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Lin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, FL., Zhang, H., Chen, SG. et al. Novel two-party quantum private comparison via quantum walks on circle. Quantum Inf Process 20, 178 (2021). https://doi.org/10.1007/s11128-021-03084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03084-2

Keywords

Navigation