Skip to main content
Log in

Efficient circular controlled quantum teleportation and broadcast schemes in the presence of quantum noises

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper takes advantage of the quantum mechanics to present two efficient circular controlled quantum communication schemes. The proposed protocols utilize ten qubits for transmitting the information qubits to five partners circularly, under the permission of a controller. The first protocol is a circular controlled quantum teleportation, which teleports unknown quantum states. The second protocol is a circular controlled quantum broadcast scheme which sends quantum states to two dispersed recipients, circularly. In this paper, the effects of quantum noises on these protocols are analyzed, and the fidelity of the quantum states is calculated too. We will see that, in the circular controlled quantum teleportation protocol, the impact of the noise on input qubits is less than its impact on channel qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  2. Zarmehi, F., Houshmand, M.: Controlled bidirectional quantum secure direct communication network using classical xor operation and quantum entanglement. IEEE Commun. Lett. 20(10), 2071 (2016)

    Article  Google Scholar 

  3. Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 1 (2019)

    Article  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing, arXiv preprint arXiv:2003.06557 (2020)

  5. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

    Article  ADS  Google Scholar 

  6. Vlachou, C., Krawec, W., Mateus, P., Paunković, N., Souto, A.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Razavi, M.: Multiple-access quantum key distribution networks. Commun. IEEE Trans. 60(10), 3071 (2012)

    Article  Google Scholar 

  8. Cacciapuoti, A.S., Caleffi, M., Van Meter, R., Hanzo, L.: When entanglement meets classical communications: quantum teleportation for the quantum Internet. IEEE Trans. Commun. 68(6), 3808–3833 (2020)

    Article  Google Scholar 

  9. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16(9), 221 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Sadeghi-Zadeh, M.S., Houshmand, M., Aghababa, H., Kochakzadeh, M.H., Zarmehi, F.: Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf. Process. 18(11), 353 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  13. Chen, J., Li, D., Liu, M., Yang, Y.: Bidirectional quantum teleportation by using a four-qubit GHZ state and two bell states. IEEE Access 8, 28925 (2020)

    Article  Google Scholar 

  14. Zhou, R.G., Xu, R., Lan, H.: Bidirectional quantum teleportation by using six-qubit cluster state. IEEE Access 7, 44269 (2019)

    Article  Google Scholar 

  15. Guo, W., Hou, X.: An efficient controlled quantum secure direct communication protocol via GHZ-like states, In: 2019 IEEE 5th International Conference on Computer and Communications (ICCC), pp. 821–825 (2019)

  16. Huo, G.W., Zhang, T.Y., Zha, X.W., Zhang, M.Z.: Controlled asymmetric bidirectional hybrid of remote state preparation and quantum teleportation. Int. J. Theor. Phys. 59(2), 331 (2020)

    Article  MathSciNet  Google Scholar 

  17. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997)

    Article  ADS  Google Scholar 

  18. Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., et al.: Ground-to-satellite quantum teleportation. Nature 549(7670), 70 (2017)

    Article  ADS  Google Scholar 

  19. Sheng, Y.B.: Certifying quantum teleportation experimentally. Quantum Eng. 1(3), e22 (2019)

    Article  Google Scholar 

  20. Hu, X.M., Zhang, C., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental multi-level quantum teleportation, arXiv preprint arXiv:1904.12249 (2019)

  21. Chou, K.S., Blumoff, J.Z., Wang, C.S., Reinhold, P.C., Axline, C.J., Gao, Y.Y., Frunzio, L., Devoret, M., Jiang, L., Schoelkopf, R.: Deterministic teleportation of a quantum gate between two logical qubits. Nature 561(7723), 368 (2018)

    Article  ADS  Google Scholar 

  22. Jian, W., Quan, Z., Chao-Jing, T.: Quantum broadcast communication. Chin. Phys. 16(7), 1868 (2007)

    Article  Google Scholar 

  23. Yan, C., Chun-Xiang, X., Shi-Bin, Z., Li-Li, Y.: Quantum broadcast communication and authentication protocol with a quantum one-time pad. Chin. Phys. B 23(1), 010305 (2013)

    Google Scholar 

  24. Yu, Y., Zha, X.W., Li, W.: Quantum broadcast scheme and multi-output quantum teleportation via four-qubit cluster state. Quantum Inf. Process. 16(2), 41 (2017)

    Article  ADS  Google Scholar 

  25. Oh, S., Lee, S., Lee, Hw.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66(2), 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594 (1998)

    Article  ADS  Google Scholar 

  27. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. Makhlin, Y.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Talebi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarmehi, F., Kochakzadeh, M.H., Abbasi-Moghadam, D. et al. Efficient circular controlled quantum teleportation and broadcast schemes in the presence of quantum noises. Quantum Inf Process 20, 175 (2021). https://doi.org/10.1007/s11128-021-03088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03088-y

Keywords

Navigation