Abstract
The real-time phase tracking has a large number of applications in the precise measurement of various physical parameters. The classical limit of fiber phase tracking has been realized with homodyne detection under a low photon flux (typically ~ 106 s−1). However, it is still difficult to approach the coherent state limit when measuring a weak phase fluctuation in real time by using a larger photon flux. In this work, we propose a fiber Mach–Zehnder system and experimentally demonstrate a nearly quantum-limited phase tracking with mean photon numbers of \(\sim3.7 \times 10^{10}\) s−1. In the experiment, the input state is a continuous-mode coherent state and an adaptive Kalman filter is used to construct a phase-locked loop. We effectively track a very weak random phase varying between − 0.07 and + 0.07 radians, and the minimum mean-squared error is optimized to \(2.5 \times 10^{ - 5}\) which approaches the coherent state limit. Our method has potentially applications for fiber-based real-time sensing and measurements.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)
Xiao, M., Wu, L.A., Kimble, H.J.: Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278–281 (1987)
Grangier, P., Slusher, R.E., Yurke, B., LaPorta, A.: Squeezed-light-enhanced polarization interferometer. Phys. Rev. Lett. 59, 2153–2156 (1987)
Berry, D.W., Wiseman, H.M.: Adaptive quantum measurements of a continuously varying phase. Phys. Rev. A 65, 043803 (2002)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)
Tsang, M., Wiseman, H.M., Caves, C.M.: Fundamental quantum limit to waveform estimation. Phys. Rev. Lett. 106, 090401 (2011)
Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)
Yonezawa, H., Nakane, D., Wheatley, T.A., Iwasawa, K., Takeda, S., Arao, H., Ohki, K., Tsumura, K., Berry, D.W., Ralph, T.C., Wiseman, H.M., Huntington, E.H., Furusawa, A.: Quantum-enhanced optical-phase tracking. Science 337, 1514–1517 (2012)
Chiang, C.-F.: Selecting efficient phase estimation with constant-precision phase shift operators. Quantum Inf. Process. 13, 415–428 (2014)
Berni, A.A., Gehring, T., Nielsen, B.M., Händchen, V., Paris, M.G.A., Andersen, U.L.: Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nat. Photonics 9, 577–581 (2015)
Meher, N., Sivakumar, S.: Enhancing phase sensitivity with number state filtered coherent states. Quantum Inf. Process. 19, 51 (2019)
Zheng, K., Xu, H., Zhang, A., Ning, X., Zhang, L.: Ab initio phase estimation at the shot noise limit with on–off measurement. Quantum Inf. Process. 18, 329 (2019)
Gea-Banacloche, J., Leuchs, G.: Squeezed states for interferometric gravitational-wave detectors. J. Mod. Opt. 34, 793–811 (1987)
Goda, K., Miyakawa, O., Mikhailov, E.E., Saraf, S., Adhikari, R., McKenzie, K., Ward, R., Vass, S., Weinstein, A.J., Mavalvala, N.: A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472–476 (2008)
Grote, H., Danzmann, K., Dooley, K.L., Schnabel, R., Slutsky, J., Vahlbruch, H.: First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 110, 181101 (2013)
LIGO Scientific Collaboration and Virgo Collaboration: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)
LIGO Scientific Collaboration and Virgo Collaboration: GW170817: Observation of Gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)
Otterstrom, N., Pooser, R.C., Lawrie, B.J.: Nonlinear optical magnetometry with accessible in situ optical squeezing. Opt. Lett. 39, 6533–6536 (2014)
Sun, H., Liu, Z., Liu, K., Yang, R., Zhang, J., Gao, J.: Experimental demonstration of a displacement measurement of an optical beam beyond the quantum noise limit. Chin. Phys. Lett. 31, 084202 (2014)
Hudelist, F., Kong, J., Liu, C., Jing, J., Ou, Z.Y., Zhang, W.: Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014)
Liu, F., Zhou, Y., Yu, J., Guo, J., Wu, Y., Xiao, S., Wei, D., Zhang, Y., Jia, X., Xiao, M.: Squeezing-enhanced fiber Mach-zehnder interferometer for low-frequency phase measurement. Appl. Phys. Lett. 110, 021106 (2017)
Lawrie, B.J., Lett, P.D., Marino, A.M., Pooser, R.C.: Quantum sensing with squeezed light. ACS Photonics 6, 1307–1318 (2019)
Liu, S., Lou, Y., Jing, J.: Interference-induced quantum squeezing enhancement in a two-beam phase-sensitive amplifier. Phys. Rev. Lett. 123, 113602 (2019)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330 (2004)
Nagata, T., Okamoto, R., Brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four-entangled photons. Science 316, 726 (2007)
Ludlow, A.D., Boyd, M.M., Ye, J., Peik, E., Schmidt, P.O.: Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015)
Wolfgramm, F., Cerè, A., Beduini, F.A., Predojević, A., Koschorreck, M., Mitchell, M.W.: Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010)
Taylor, M.A., Janousek, J., Daria, V., Knittel, J., Hage, B., Bachor, H.-A., Bowen, W.P.: Biological measurement beyond the quantum limit. Nat. Photonics 7, 229–233 (2013)
Feng, L., Zhang, M., Zhou, Z., Li, M., Xiong, X., Yu, L., Shi, B., Guo, G., Dai, D., Ren, X., Guo, G.: On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat. Commun. 7, 11985 (2016)
The LIGO Scientific Collaboration: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 7, 613–619 (2013)
Armen, M.A., Au, J.K., Stockton, J.K., Doherty, A.C., Mabuchi, H.: Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 89, 133602 (2002)
Iwasawa, K., Makino, K., Yonezawa, H., Tsang, M., Davidovic, A., Huntington, E., Furusawa, A.: Quantum-limited mirror-motion estimation. Phys. Rev. Lett. 111, 163602 (2013)
Zhang, L., Zheng, K., Liu, F., Zhao, W., Tang, L., Yonezawa, H., Zhang, L., Zhang, Y., Xiao, M.: Quantum-limited fiber-optic phase tracking beyond pi range. Opt. Express 27, 2327–2334 (2019)
Cimini, V., Mellini, M., Rampioni, G., Sbroscia, M., Leoni, L., Barbieri, M., Gianani, I.: Adaptive tracking of enzymatic reactions with quantum light. Opt. Exp. 27, 35245–35256 (2019)
Cimini, V., Gianani, I., Ruggiero, L., Gasperi, T., Sbroscia, M., Roccia, E., Tofani, D., Bruni, F., Ricci, M.A., Barbieri, M.: Quantum sensing for dynamical tracking of chemical processes. Phys. Rev. A 99, 053817 (2019)
Berry, D.W., Tsang, M., Hall, M.J.W., Wiseman, H.M.: Quantum Bell-Ziv-zakai bounds and heisenberg limits for waveform estimation. Phys. Rev. X 5, 031018 (2015)
Berry, D.W., Hall, M.J.W., Wiseman, H.M.: Stochastic heisenberg limit: optimal estimation of a fluctuating phase. Phys. Rev. Lett. 111, 113601 (2013)
Dinani, H.T., Berry, D.W.: Adaptive estimation of a time-varying phase with a power-law spectrum via continuous squeezed states. Phys. Rev. A 95, 063821 (2017)
Cooper, W.S.: Use of optimal estimation theory, in particular the Kalman filter, in data analysis and signal processing. Rev. Sci. Instrum. 57, 2862–2869 (1986)
Beker, M.G., Bertolini, A., van den Brand, J.F., Bulten, H.J., Hennes, E., Rabeling, D.S.: State observers and Kalman filtering for high performance vibration isolation systems. Rev. Sci. Instrum. 85, 034501 (2014)
Marshall, T., Szafraniec, B., Nebendahl, B.: Kalman filter carrier and polarization-state tracking. Opt. Lett. 35, 2203–2205 (2010)
Jimenez-Martinez, R., Kolodynski, J., Troullinou, C., Lucivero, V.G., Kong, J., Mitchell, M.W.: Signal tracking beyond the time resolution of an atomic sensor by kalman filtering. Phys. Rev. Lett. 120, 040503 (2018)
Dubey, S.U., Dubey, P.K., Rajagopalan, S., Sharma, S.J.: Real-time implementation of Kalman filter to improve accuracy in the measurement of time of flight in an ultrasonic pulse-echo setup. Rev. Sci. Instrum. 90, 025105 (2019)
Wieczorek, W., Hofer, S.G., Hoelscher-Obermaier, J., Riedinger, R., Hammerer, K., Aspelmeyer, M.: Optimal state estimation for cavity optomechanical systems. Phys. Rev. Lett. 114, 223601 (2015)
Lee, B.: Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9, 57–79 (2003)
Mauranyapin, N.P., Madsen, L.S., Taylor, M.A., Waleed, M., Bowen, W.P.: Evanescent single-molecule biosensing with quantum-limited precision. Nat. Photonics 11, 477–481 (2017)
Wang, X., Chen, S., Du, Z., Wang, X., Shi, C., Chen, J.: Experimental study of some key issues on fiber-optic interferometric sensors detecting weak magnetic field. IEEE Sens. J. 8, 1173–1179 (2008)
McRae, T.G., Ngo, S., Shaddock, D.A., Hsu, M.T.L., Gray, M.B.: Frequency stabilization for space-based missions using optical fiber interferometry. Opt. Lett. 38, 278–280 (2013)
Mehmet, M., Eberle, T., Steinlechner, S., Vahlbruch, H., Schnabel, R.: Demonstration of a quantum-enhanced fiber Sagnac interferometer. Opt. Lett. 35, 1665–1667 (2010)
Huo, M., Qin, J., Cheng, J., Yan, Z., Qin, Z., Su, X., Jia, X., Xie, C., Peng, K.: Deterministic quantum teleportation through fiber channels. Sci. Adv. 4, eaas9401 (2018)
Ben-Aryeh, Y.: Phase estimation by photon counting measurements in the output of a linear Mach -Zehnder interferometer. J. Opt. Soc. Am. B-Opt. Phys. 29, 2754–2764 (2012)
Tsang, M., Shapiro, J.H., Lloyd, S.: Quantum theory of optical temporal phase and instantaneous frequency II Continuous-time limit and state-variable approach to phase-locked loop design. Phys. Rev. A 79(5), 053843 (2009)
Laverick, K.T., Wiseman, H.M., Dinani, H.T., Berry, D.W.: Adaptive estimation of a time-varying phase with coherent states: Smoothing can give an unbounded improvement over filtering. Phys. Rev. A 97, 042334 (2018)
Xu, C., Zhang, L., Huang, S., Ma, T., Liu, F., Yonezawa, H., Zhang, Y., Xiao, M.: Sensing and tracking enhanced by quantum squeezing. Photonics Res. 7, A14–A26 (2019)
Acknowledgments
The authors would like to thank Hidehiro Yonezawa, Lisheng Chen and Liufeng Li for illuminating discussions on this work. This research was supported by the National Key R&D Program of China (2017YFA0303703), Fundamental Research Funds for the Central Universities (021314380105), and the National Science Foundation of China (Grant No. 61605072, 61771236,).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, F., Zheng, K., Wang, L. et al. Approaching quantum-limited phase tracking with a large photon flux in a fiber Mach–Zehnder interferometer. Quantum Inf Process 20, 164 (2021). https://doi.org/10.1007/s11128-021-03097-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03097-x