Skip to main content
Log in

Efficient quantum multi-hop communication based on Greenberger–Horne–Zeilinger states and Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A novel quantum multi-hop communication scheme is proposed based on multi-qubit Greenberger–Horne–Zeilinger (GHZ) states and Bell states. We first propose a method where a GHZ state of arbitrary scale is generated efficiently by combining small-scale GHZ states via Bell-state measurements in a distributed manner. Based on this, we present an efficient and economical multi-hop quantum communication protocol. Finally, our scheme is compared with existing quantum multi-hop communication schemes in terms of communication efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Let. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Vaidamn, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994)

    Article  ADS  Google Scholar 

  3. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  4. Karlsson, A., Bournnane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  6. Muralidharan, S., Karumanchi, S., Jain, S., Srikanth, R., Panigrahi, P.K.: 2N qubit “mirror states” for optimal quantum communication. Eur. Phys. J. D 61, 757–763 (2011)

    Article  ADS  Google Scholar 

  7. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  8. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)

    Article  ADS  Google Scholar 

  9. Jin, X.-M., Ren, J.-G., Yang, B., Yi, Z.-H., Zhou, F., Xu, X.-F., Wang, S.-K., Yang, D., Hu, Y.-F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.-Z., Pan, J.-W.: Experimental free-space quantum teleportation. Nat. Photon. 4, 376–381 (2010)

    Article  ADS  Google Scholar 

  10. Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., Cai, X.-D., Xu, P., Pan, G.-S., Jia, J.-J., Huang, Y.-M., Yin, H., Wang, J.-Y., Chen, Y.-A., Peng, C.-Z., Pan, J.-W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012)

    Article  ADS  Google Scholar 

  11. Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)

    Article  ADS  Google Scholar 

  12. Ren, J.-G., Xu, P., Yong, H.-L., et al.: Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017)

    Article  ADS  Google Scholar 

  13. Cheng, S.-T., Wang, C.-Y., Tao, M.-H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Area Commun. 23, 1424–1432 (2005)

    Article  Google Scholar 

  14. Yu, X.-T., Xu, J., Zhang, Z.-C.: Distributed wireless quantum communication networks. Chin. Phys. B 22(9), 090311 (2013)

    Article  ADS  Google Scholar 

  15. Wang, K., Yu, X.-T., Lu, S.-L., Gong, X.-Y.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89(2), 022329 (2014)

    Article  ADS  Google Scholar 

  16. Wang, K., Gong, X.-Y., Yu, X.-T., Lu, S.-L.: Addendum to “Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation.” Phys. Rev. A 90, 044302 (2014)

    Article  ADS  Google Scholar 

  17. Cai, X.-F., Yu, X.-T., Shi, L.-H., Zhang, Z.-C.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9(5), 646–651 (2014)

    Article  ADS  Google Scholar 

  18. Shi, L.-H., Yu, X.-T., Cai, X.-F., Gong, X.-Y., Zhang, Z.-C.: Quantum information transmission in the quantum wireless multihop network based on Werner state. Chin. Phys. B 24(5), 050308 (2015)

    Article  ADS  Google Scholar 

  19. Xiong, P.-Y., Yu, X.-T., Zhan, H.-T., Zhang, Z.-C.: Multiple teleportation via partially entangled GHZ state. Front. Phys. 11(4), 110303 (2016)

    Article  ADS  Google Scholar 

  20. Zhan, H.-T., Yu, X.-T., Xiong, P.-Y., Zhang, Z.-C.: Multi-hop teleportation based on W state and EPR pairs. Chin. Phys. B 25(5), 050305 (2016)

    Article  Google Scholar 

  21. Zou, Z.-Z., Yu, X.-T., Gong, Y.-X., Zhang, Z.-C.: Multihop teleportation of two-qubit state via the composite GHZ-Bell channel. Phys. Lett. A 381, 76–81 (2017)

    Article  ADS  Google Scholar 

  22. Zhang, Z.-H., Wang, J.-W., Sun, M.: Multihop teleportation via the composite of asymmetric W state and Bell state. Int. J. Theor. Phys. 57, 3605–3620 (2018)

    Article  MathSciNet  Google Scholar 

  23. Yang, Y.-G., Cao, S.-N., Zhou, Y.-H., Shi, W.-M.: Quantum wireless network communication based on cluster states. Mode. Phys. Lett A 35, 2050178 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gao, X.-Q., Zhang, Z.-C., Sheng, B.: Multi-hop teleportation in a quantum network based on mesh topology. Front. Phys. 13, 130314 (2018)

    Article  Google Scholar 

  25. Xiong, P.-Y., Yu, X.-T., Zhang, Z.-C., et al.: Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state. Front. Phys. 12, 120302 (2017)

    Article  ADS  Google Scholar 

  26. Wallnöfer, J., Zwerger, M., Muschik, C., Sangouard, N., Dür, W.: Two-dimensional quantum repeaters. Phys. Rev. A 94, 052307 (2016)

    Article  ADS  Google Scholar 

  27. Pemberton, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)

    Article  ADS  Google Scholar 

  28. Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., VanMeter, R., Hollenberg, L.C.L.: Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010)

    Article  ADS  Google Scholar 

  29. Meter, R., Satoh, T., Ladd, T.D., Munro, W.J., Nemoto, K.: Path selection for quantum repeater networks. Netw. Sci. 3, 82–95 (2013)

    Article  Google Scholar 

  30. Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)

    Article  MathSciNet  Google Scholar 

  31. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. Du, G., Zhou, B.M., Ma, C.G., Zhang, S., Li, J.Y.: A secure quantum voting scheme based on orthogonal product states. Int. J. Theor. Phys. 60(4), 1374–1383 (2021)

    Article  MathSciNet  Google Scholar 

  33. Lin, M.M., Xue, D.W., Wang, Y., Zhang, K.J.: A new quantum payment protocol based on a set of local indistinguishable orthogonal product states. Int. J. Theor. Phys. 60(4), 1237–1245 (2021)

    Article  MathSciNet  Google Scholar 

  34. Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)

    Article  MathSciNet  Google Scholar 

  35. Xu, Y.L., Xu, G.B., Jiang, D.H.: Novel quantum proxy signature scheme based on orthogonalquantum product states. Mod. Phys. Lett. B 34(16), 2050172 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62071015); the Beijing Municipal Science and Technology Commission (Project No. Z191100007119004), and the Guangxi Key Laboratory of Cryptography and Information Security (Grant No. GCIS201810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YL., Yang, YG., Zhou, YH. et al. Efficient quantum multi-hop communication based on Greenberger–Horne–Zeilinger states and Bell states. Quantum Inf Process 20, 189 (2021). https://doi.org/10.1007/s11128-021-03121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03121-0

Keywords

Navigation