Abstract
Deterministic secure quantum communication (DSQC) is an important branch of quantum cryptography and has attracted continuous attention. However, in practical DSQC, the receiver’s detectors can be subjected to detector-side-channel attacks launched by the outside eavesdropper. Moreover, encoding the information in only one degree of freedom (DOF) of photons makes DSQC inefficient. Here, to remove all the detector side channels and increase single-photons’ channel capacity, we report the first high-capacity measurement-device-independent DSQC (HC-MDI-DSQC) protocol by using photons’ polarization-spatial-mode DOFs. This method is similar to the idea of MDI quantum key distribution. Theoretical analyses show that it is advantageous in terms of security and efficiency compared with the state-of-the-art DSQC protocols.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Long, G.-L., Deng, F.-G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)
Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60(1), 157–166 (1999)
Beige, A., Englert, B.-G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A: Math. Gen. 35(28), L407–L413 (2002)
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902/1-187902/4 (2002)
Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501/1-140501/4 (2005)
Cai, Q.-Y., Li, B.-W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)
Li, X.-H., Deng, F.-G., Li, C.-Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49(4), 1354–1359 (2006)
Yuan, H., Song, J.: An efficient deterministic secure quantum communication scheme with Cluster state. Int. J. Quant. Inform. 7(3), 689–696 (2009)
Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Li, Z.Q.: Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. Chin.-Inf. Sci. 55(2), 360–367 (2012)
Tsai, C.W., Hwang, T.: Deterministic quantum communication using the symmetric W state. Sci. Chin. Ser. G-Phys. Mech. Astron. 56, 1903–1908 (2013)
Yuan, H., Zhang, Q., Hong, L., et al.: Scheme for deterministic secure quantum communication with three-qubit GHZ state. Int. J. Theor. Phys. 53(8), 2558–2564 (2014)
Hu, Y.-G.: Deterministic secure quantum communication with four-qubit GHZ states. Int. J. Theor. Phys. 57(9), 2831–2842 (2018)
Yuan, H., Song, J., Liu, X.-Y., Yin, X.-F.: Deterministic secure four-qubit GHZ states three-step protocol for quantum communication. Int. J. Theor. Phys. 58(11), 3658–3666 (2019)
Elsayed, T.A.: Deterministic secure quantum communication with and without entanglement. Phys. Scrip. 96(2), 025101 (2021)
Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)
Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)
Lydersen, L., Wiechers, C., Wittmann, C., et al.: Thermal blinding of gated detectors in quantum cryptography. Opt. Exp. 18(26), 27938–27954 (2010)
Gerhardt, I., Liu, Q., Lamas-Linares, A.A., et al.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)
Qin, H., Kumar, R., Makarov, V., et al.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)
Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)
Walborn, S.P., Almeida, M.P., Souto Ribeiro, P.H., Monken, C.H.: Quantum information processing with hyperentangled photon states. Quantum Inf. Comput. 6, 336 (2006)
Wu, X.-D., Zhou, L., Zhong, W., Sheng, Y.-B.: High-capacity measurement-device-independent quantum secure direct communication. Quantum Inf. Process. 19, 354 (2020)
Wang, T.-J., Li, T., Du, F.-F., Deng, F.-G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)
Liu, D., Chen, J.-L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)
Zhao, R.-T., Cheng, L.-L.: High capacity information transmission with single-photon in polarization and spatial mode degrees of freedom over a collective noisy channel. Laser Phys. 30, 065204 (2020)
Xu, L., Zhao, Z.-W.: High-capacity quantum private comparison protocol with two-photon hyperentangled Bell states in multiple-degree of freedom. Eur. Phys. J. D 73, 58 (2019)
Wei, T.-C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled Bell state analysis. Phys. Rev. A 75, 060305(R) (2007)
Pisenti, N., Gaebler, C.P.E., Lynn, T.W.: Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement. Phys. Rev. A 84, 022340 (2011)
Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)
Xia, Y., Chen, Q.Q., Song, J., Song, H.S.: Efficient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029 (2012)
Li, X.H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93, 022302 (2016)
Li, X.H., Ghose, S.: Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96, 020303 (2017)
Aharonov, D., Ta-Shma, A., Vazirani, U.V., et al.: Quantum bit escrow. Proceedings of the thirty-second annual ACM symposium on Theory of computing pp. 705–714 (2000)
Kwiat, P.G., Weinfurter, H.: Embedded Bell-state analysis. Phys. Rev. A 58, 2623(R) (1998)
Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Phys. Rev. Lett. 96, 190501 (2006)
Zhao, L., Yin, Z., Wang, S., et al.: Measurement-device-independent quantum coin tossing. Phys. Rev. A 92(6), 062327 (2015)
Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. Chin. Phys. Mech. Astron. 63(3), 230362 (2020)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)
Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)
Du, G., Zhou, B.M., Ma, C.G., Zhang, S., Li, J.Y.: A secure quantum voting scheme based on orthogonal product states. Int. J. Theor. Phys. 60(4), 1374–1383 (2021)
Lin, M.M., Xue, D.W., Wang, Y., Zhang, K.J.: A new quantum payment protocol based on a set of local indistinguishable orthogonal product states. Int. J. Theor. Phys. 60(4), 1237–1245 (2021)
Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)
Xu, Y.L., Xu, G.B., Jiang, D.H.: Novel quantum proxy signature scheme based on orthogonalquantum product states. Mod. Phys. Lett. B 34(16), 2050172 (2020)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 62071015); the Beijing Municipal Science & Technology Commission (Project No. Z191100007119004), the Beijing Natural Science Foundation (Grant No. 4182006), and the Guangxi Key Laboratory of Cryptography and Information Security (Grant No. GCIS201810).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix: Theoretical probabilities of the seven hyperentangled Bell states
Appendix: Theoretical probabilities of the seven hyperentangled Bell states
Table 3
Rights and permissions
About this article
Cite this article
Yang, YG., Dong, JR., Yang, YL. et al. High-capacity measurement-device-independent deterministic secure quantum communication. Quantum Inf Process 20, 203 (2021). https://doi.org/10.1007/s11128-021-03129-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03129-6