Abstract
Recently, a measurement-device-independent protocol for deterministic quantum secret sharing was proposed (Gao et al. in Sci Chin Phys Mech Astron 63(12):120311, 2020). Unfortunately, it was pointed out to be insecure against the participant attack (Yang et al. in Sci Chin Phys Mech Astron 64(6):260321, 2021). However, this participant attack strategy has an assumption that a dishonest agent has to reveal his single-photon state after other agents. Here, we give a more powerful participant attack strategy regardless of the announcement order.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)
Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Lett. A 83(3), 648 (1999)
Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)
Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65(4), 042310 (2002)
Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)
Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett 92(17), 177903 (2004)
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)
Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)
Xiang, Y., Kogias, I., Adesso, G., He, Q.: Multipartite gaussian steering: Monogamy constraints and quantum cryptography applications. Phys. Rev. A 95(1), 010101 (2017)
Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)
Huang, C.Y., Lambert, N., Li, C.M., Lu, Y.T., Nori, F.: Securing quantum networking tasks with multipartite Einstein–Podolsky–Rosen steering. Phys. Rev. A 99(1), 012302 (2019)
Habibidavijani, M., Sanders, B.C.: Continuous-variable ramp quantum secret sharing with gaussian states and operations. Phys. 21(11), 113023 (2019)
Lipinska, V., Murta, G., Ribeiro, J., Wehner, S.: Verifiable hybrid secret sharing with few qubits. Phys. Rev. A 101(3), 032332 (2020)
Wu, X., Wang, Y., Huang, D.: Passive continuous-variable quantum secret sharing using a thermal source. Phys. Rev. A 101(2), 022301 (2020)
Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11(6), 065003 (2009)
Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)
Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Thermal blinding of gated detectors in quantum cryptography. Opt. Exp. 18(26), 27938–27954 (2010)
Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 1–6 (2011)
Qin, H., Kumar, R., Makarov, V., Alléaume, R.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)
Gao, Z., Li, T., Li, Z.: Deterministic measurement-device-independent quantum secret sharing. Sci. Chin. Phys. Mech. Astron. 63(12), 1–8 (2020)
Yang, Y.G., Wang, Y.C., Yang, Y.L., Chen, X.B., Li, D., Zhou, Y.H., Shi, W.M.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. Chin. Phys. Mech. Astron. 64(6), 260321 (2021)
Pan, J., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998)
Gao, F., Wen, Q., Zhu, F., et al.: Cryptanalysis of the Hillery-Bužek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324 (2007)
Guo, F., Wen, Q., Zhu, F., et al.: Comment on “Experimental demonstration of a quantum protocol for Byzantine agreement and liar detection”. Phys. Rev. Lett. 101(20), 208901 (2008)
Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)
Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360(6), 746–747 (2007)
Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)
Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)
Yang, Y.G., Chai, H.P., Teng, Y.W., et al.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50(2), 395–400 (2011)
Yang, Y.G., Xia, J., Jia, X., et al.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12(2), 877–885 (2013)
Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101–103 (2006)
Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)
Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)
Du, G., Zhou, B.M., Ma, C.G., Zhang, S., Li, J.Y.: A secure quantum voting scheme based on orthogonal product states. Int. J. Theor. Phys. 60(4), 1374–1383 (2021)
Lin, M.M., Xue, D.W., Wang, Y., Zhang, K.J.: A new quantum payment protocol based on a set of local indistinguishable orthogonal product states. Int. J. Theor. Phys. 60(4), 1237–1245 (2021)
Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)
Xu, Y.L., Xu, G.B., Jiang, D.H.: Novel quantum proxy signature scheme based on orthogonalquantum product states. Mod. Phys. Lett. B 34(16), 2050172 (2020)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 62071015).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, YG., Liu, XX., Gao, S. et al. A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing. Quantum Inf Process 20, 223 (2021). https://doi.org/10.1007/s11128-021-03141-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03141-w