Skip to main content
Log in

A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, a measurement-device-independent protocol for deterministic quantum secret sharing was proposed (Gao et al. in Sci Chin Phys Mech Astron 63(12):120311, 2020). Unfortunately, it was pointed out to be insecure against the participant attack (Yang et al. in Sci Chin Phys Mech Astron 64(6):260321, 2021). However, this participant attack strategy has an assumption that a dishonest agent has to reveal his single-photon state after other agents. Here, we give a more powerful participant attack strategy regardless of the announcement order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  ADS  Google Scholar 

  3. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Lett. A 83(3), 648 (1999)

    Article  Google Scholar 

  4. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65(4), 042310 (2002)

    Article  ADS  Google Scholar 

  6. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  8. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett 92(17), 177903 (2004)

    Article  ADS  Google Scholar 

  9. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  11. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  13. Xiang, Y., Kogias, I., Adesso, G., He, Q.: Multipartite gaussian steering: Monogamy constraints and quantum cryptography applications. Phys. Rev. A 95(1), 010101 (2017)

    Article  ADS  Google Scholar 

  14. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)

    Article  ADS  Google Scholar 

  15. Huang, C.Y., Lambert, N., Li, C.M., Lu, Y.T., Nori, F.: Securing quantum networking tasks with multipartite Einstein–Podolsky–Rosen steering. Phys. Rev. A 99(1), 012302 (2019)

    Article  ADS  Google Scholar 

  16. Habibidavijani, M., Sanders, B.C.: Continuous-variable ramp quantum secret sharing with gaussian states and operations. Phys. 21(11), 113023 (2019)

    MathSciNet  Google Scholar 

  17. Lipinska, V., Murta, G., Ribeiro, J., Wehner, S.: Verifiable hybrid secret sharing with few qubits. Phys. Rev. A 101(3), 032332 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wu, X., Wang, Y., Huang, D.: Passive continuous-variable quantum secret sharing using a thermal source. Phys. Rev. A 101(2), 022301 (2020)

    Article  ADS  Google Scholar 

  19. Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11(6), 065003 (2009)

    Article  ADS  Google Scholar 

  20. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)

    Article  ADS  Google Scholar 

  21. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Thermal blinding of gated detectors in quantum cryptography. Opt. Exp. 18(26), 27938–27954 (2010)

    Article  ADS  Google Scholar 

  22. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 1–6 (2011)

    Article  Google Scholar 

  23. Qin, H., Kumar, R., Makarov, V., Alléaume, R.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)

    Article  Google Scholar 

  24. Gao, Z., Li, T., Li, Z.: Deterministic measurement-device-independent quantum secret sharing. Sci. Chin. Phys. Mech. Astron. 63(12), 1–8 (2020)

    Article  Google Scholar 

  25. Yang, Y.G., Wang, Y.C., Yang, Y.L., Chen, X.B., Li, D., Zhou, Y.H., Shi, W.M.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. Chin. Phys. Mech. Astron. 64(6), 260321 (2021)

    Article  ADS  Google Scholar 

  26. Pan, J., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gao, F., Wen, Q., Zhu, F., et al.: Cryptanalysis of the Hillery-Bužek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324 (2007)

    Article  ADS  Google Scholar 

  28. Guo, F., Wen, Q., Zhu, F., et al.: Comment on “Experimental demonstration of a quantum protocol for Byzantine agreement and liar detection”. Phys. Rev. Lett. 101(20), 208901 (2008)

    Article  ADS  Google Scholar 

  29. Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360(6), 746–747 (2007)

    Article  ADS  Google Scholar 

  31. Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)

    Article  ADS  Google Scholar 

  32. Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  33. Yang, Y.G., Chai, H.P., Teng, Y.W., et al.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50(2), 395–400 (2011)

    Article  Google Scholar 

  34. Yang, Y.G., Xia, J., Jia, X., et al.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101–103 (2006)

    Article  ADS  Google Scholar 

  36. Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)

    Article  MathSciNet  Google Scholar 

  37. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. process. 20, 128 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  38. Du, G., Zhou, B.M., Ma, C.G., Zhang, S., Li, J.Y.: A secure quantum voting scheme based on orthogonal product states. Int. J. Theor. Phys. 60(4), 1374–1383 (2021)

    Article  MathSciNet  Google Scholar 

  39. Lin, M.M., Xue, D.W., Wang, Y., Zhang, K.J.: A new quantum payment protocol based on a set of local indistinguishable orthogonal product states. Int. J. Theor. Phys. 60(4), 1237–1245 (2021)

    Article  MathSciNet  Google Scholar 

  40. Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A trusted third-party E-payment protocol based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(5), 1442–1450 (2020)

    Article  MathSciNet  Google Scholar 

  41. Xu, Y.L., Xu, G.B., Jiang, D.H.: Novel quantum proxy signature scheme based on orthogonalquantum product states. Mod. Phys. Lett. B 34(16), 2050172 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62071015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Liu, XX., Gao, S. et al. A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing. Quantum Inf Process 20, 223 (2021). https://doi.org/10.1007/s11128-021-03141-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03141-w

Keywords