Skip to main content
Log in

Detection of genuine multipartite entanglement based on uncertainty relations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A multipartite state that is not the convex sum of bipartite product states is said to be a genuine multipartite entangled (GME) state, which offers more significant advantages in quantum information compared with entanglement. We propose a sufficient criterion for the detection of GME based on uncertainty relations for chosen observables of subsystems. We apply the criterion to detect the GME properties of noisy n-partite W state when \(n = 3, 4, 5\) and 6 and find that the criterion can detect more noisy W states when n ranges from 4 to 6. Moreover, the criterion is also used to detect the genuine entanglement of 3-qutrit states. The result is stronger than that based on GME concurrence and Fisher information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)

    Article  ADS  Google Scholar 

  4. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bell\(^{\prime }\)s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  7. Hillery, M., Nek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chang, C.R., et al.: The second quantum revolution with quantum computers. AAPPS Bull. 30(1), 9–22 (2020)

    Google Scholar 

  9. Do, H., Malaney, R., Green, J.: Satellite-based distribution of hybrid entanglement. Quantum Eng. 3, e60 (2021)

    Article  Google Scholar 

  10. Yan, Z., et al.: Generation of non-classical states of light and their application in deterministic quantum teleportation. Fundam. Res. 1(1), 43–49 (2021)

    Article  Google Scholar 

  11. Yang, C., Li, D.X., Shao, X.Q.: Dissipative preparation of Bell states with parallel quantum Zeno dynamics. SCI. CHINA Phys. Mech. 62(11), 110312 (2019)

    Article  Google Scholar 

  12. Huang, W.J., et al.: Mermin’s inequalities of multiple qubits with orthogonal measurements on IBM Q53-qubit system. Quantum Eng. 2, e45 (2020)

    Article  Google Scholar 

  13. Hu, X.M., et al.: Experimental certification for nonclassical teleportation. Quantum Eng. 1, e13 (2019)

    Article  Google Scholar 

  14. Chen, G., et al.: Device-independent characterization of entanglement based on Bell nonlocality. Fundam. Res. 1, 27–42 (2021)

    Article  Google Scholar 

  15. Li, G.Y., et al.: Quantum coherence transfer between an optical cavity and mechanical resonators. SCI. CHINA Phys. Mech. 62(10), 100311 (2019)

    Article  Google Scholar 

  16. Xiang, Y., Sun, F., He, Q., Gong, Q.: Advances in multipartite and high-dimensional Einstein–Podolsky–Rosen steering. Fundam. Res. 1, 99–101 (2021)

    Article  Google Scholar 

  17. Yang, L., et al.: Quantum secure direct communication with entanglement source and single-photon measurement. SCI. CHINA Phys. Mech. 63(11), 110311 (2020)

    Article  Google Scholar 

  18. Gisin, N., Rinordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  19. Srensen, A.S., Mlmer, K.: Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431 (2001)

    Article  ADS  Google Scholar 

  20. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (1999)

    Article  ADS  Google Scholar 

  21. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., et al.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  22. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Scarani, V., Gisin, N.: Quantum communication between N partners and Bell’s inequalities. Phys. Rev. Lett. 87, 117901 (2001)

    Article  ADS  Google Scholar 

  24. Bancal, J.D., Gisin, N., Liang, Y.C., Pironio, S.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  25. Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010)

    Article  ADS  Google Scholar 

  26. de Vicente, J.I., Huber, M.: Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011)

    Article  ADS  Google Scholar 

  27. Wu, J.Y., Kampermann, H., Bru\({\mathfrak{B}}\), D., Kl\(\ddot{o}\)ckl, C., Huber, M.: Determining lower bounds on a measure of multipartite entanglement from few local observables. Phys. Rev. A 86, 022319 (2012)

  28. Sperling, J., Vogel, W.: Multipartite entanglement witnesses. Phys. Rev. Lett. 111, 110503 (2013)

    Article  ADS  Google Scholar 

  29. Kl\(\ddot{o}\)ckl, C., Huber, M.: Characterizing multipartite entanglement without shared reference frames. Phys. Rev. A 91, 042339 (2015)

  30. Eltschka, C., Siewert, J.: Quantifying entanglement resources. J. Phys. A Math. Theor. 47, 424005 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Yang, L.M., Sun, B.Z., Chen, B., Fei, S.M., Wang, Z.X.: Quantum fisher information-based detection of genuine tripartite entanglement. Quantum. Inf. Process. 19, 262 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012)

    Article  ADS  Google Scholar 

  33. Hong, Y., Gao, T., Yan, F.: Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323 (2012)

    Article  ADS  Google Scholar 

  34. Gao, T., Yan, F., van Enk, S.J.: Permutationally invariant part of a density matrix and nonseparability of n-qubit states. Phys. Rev. Lett. 112, 180501 (2014)

    Article  ADS  Google Scholar 

  35. Li, M., Jia, L., Wang, J., Shen, S., Fei, S.M.: Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017)

    Article  ADS  Google Scholar 

  36. Li, M., Wang, J., Shen, S., Chen, Z., Fei, S.M.: Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices. Sci. Rep. 7, 17274 (2017)

    Article  ADS  Google Scholar 

  37. Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)

    Article  ADS  Google Scholar 

  38. de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  39. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)

    Article  ADS  Google Scholar 

  40. Zhang, C.J., Nha, H., Zhang, Y.S., Guo, G.C.: Entanglement detection via tighter local uncertainty relations. Phys. Rev. A 81, 012424 (2009)

    Google Scholar 

  41. Akbari-Kourbolagh, Y., Azhdargalam, M.: Entanglement criterion for tripartite systems based on local sum uncertainty relations. Phys. Rev. A 97, 042333 (2018)

    Article  ADS  MATH  Google Scholar 

  42. Teh, R.Y., Reid, M.D.: Criteria to detect genuine multipartite entanglement using spin measurements. Phys. Rev. A 100, 022126 (2019)

    Article  ADS  Google Scholar 

  43. Chen, X.Y., Jiang, L.Z.: Noise tolerance of Dicke states. Phys. Rev. A 101, 012308 (2020)

    Article  ADS  Google Scholar 

  44. Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103, 020503 (2009)

    Article  ADS  Google Scholar 

  45. Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., T\(\acute{o}\)th, G., Weinfurter, H.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (2009)

  46. Korbicz, J.K., G\(\ddot{u}\)hne, O., Lewenstein, M., H\(\ddot{a}\)ffner, H., Roos, C.F., Blatt, R.: Generalized spin-squeezing inequalities in N-qubit systems: theory and experiment. Phys. Rev. A 74, 052319 (2006)

  47. \(D^{\prime }\)Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6, 173 (2006)

  48. Van den Nest, M., Miyake, A., D\(\ddot{u}\)r, W., Briegel, H.J.: Universal resources for measurement-based quantum computation. Phys. Rev. Lett. 97, 150504 (2006)

  49. Schneider, S., Milburn, G.J.: Entanglement in the steady state of a collectiveangular-momentum (Dicke) model. Phys. Rev. A 65, 042107 (2002)

    Article  ADS  Google Scholar 

  50. Or\(\acute{u}\)s, R., Dusuel, S., Vidal, J.: Equivalence of critical scaling laws for manybody entanglement in the Lipkin–Meshkov–Glick model. Phys. Rev. Lett. 101, 025701 (2008)

  51. Vedral, V.: High-temperature macroscopic entanglement. New J. Phys. 6, 102 (2004)

    Article  ADS  Google Scholar 

  52. Bastin, T., Thiel, C., von Zanthier, J., Lamata, L., Solano, E., Agarwal, G.S.: Operational determination of multiqubit entanglement classes via tuning of local operations. Phys. Rev. Lett. 102, 053601 (2009)

    Article  ADS  Google Scholar 

  53. G\(\ddot{u}\)hne, O., T\(\acute{o}\)th, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

  54. Maccone, L., Pati, A.K.: Strong uncertainty relations for all incompatible observables. Phys. Rev. Lett. 113, 260401 (2014)

    Article  ADS  Google Scholar 

  55. Chen, B., Cao, N.P., Fei, S.M., Long, G.L.: Variance-based uncertainty relations for incompatible observables. Quantum Inf. Process. 15, 3909 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Chen, B., Fei, S.M.: Sum uncertainty relations dor arbitrary N incompatible observables. Sci. Rep. 5, 14238 (2015)

    Article  ADS  Google Scholar 

  57. Song, Q.C., Li, J.L., Peng, G.X., Qiao, C.F.: A stronger multi-observable uncertainty relation. Sci. Rep. 7, 44764 (2017)

    Article  ADS  Google Scholar 

  58. Bancal, J.D., Gisin, N., Liang, Y.C., Pironio, S.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  59. Jungnitsch, B., Moroder, T., Guhne, O.: Taming multiparticle entanglement. Phys. Rev. Lett. 106, 190502 (2011)

    Article  ADS  Google Scholar 

  60. Hofmann, H.F., Takeuchi, S.: Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  61. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  62. T\(\acute{o}\)th, G.: Detection of multipartite entanglement in the vicinity of symmetric Dicke states. J. Opt. Soc. Am. B 24, 275 (2007)

Download references

Acknowledgements

Authors were supported by the NNSF of China (Grant No. 11871089) and the Fundamental Research Funds for the Central Universities (Grant Nos. ZG216S1902 and ZG216S2110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Li or Lin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, L. Detection of genuine multipartite entanglement based on uncertainty relations. Quantum Inf Process 20, 220 (2021). https://doi.org/10.1007/s11128-021-03154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03154-5

Keywords

Navigation