Skip to main content
Log in

An efficient semi-quantum secret sharing protocol of specific bits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secret sharing (QSS) allows a trusted party to distribute the secret keys to a group of participates, who can only access the secret cooperatively. The semi-quantum secret sharing (SQSS) takes fewer quantum resources and has higher efficiency than the QSS protocol. However, in the existing SQSS protocols, the shared secrets are generated according to the random operations of Bob and Charlie, which are inefficient and uncertain. An efficient semi-quantum secret sharing protocol based on Bell states was proposed, where Alice can share the specific secrets with Bob and Charlie, by encoding her secrets on the two different Bell states. Then, the security analysis shows that this scheme is secure against intercept–resend attack, entangle–measure attack and Trojan horse attack. Compared with similar studies, the proposed scheme is more flexible and practical, and the qubit efficiency is increased by about \(100\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing, In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179, Bangalore (1984)

  3. Liu, X., Hersam, M.C.: 2D materials for quantum information science. Nat. Rev. Mater. 4(10), 669–684 (2019)

    Article  ADS  Google Scholar 

  4. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  5. Li, L.L., Li, J., Li, C.Y., et al.: Deterministic quantum secure direct communication protocol based on Omega state. IEEE Access 7, 6915–6921 (2019)

    Article  Google Scholar 

  6. Dong, Y., Wang, Y.K., Yuan, F., et al.: Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15(8), 668–674 (2020)

    Article  ADS  Google Scholar 

  7. Williams, B.P., Lukens, J.M., Peters, N.A., et al.: Quantum secret sharing with polarization-entangled photon pairs. Phys. Rev. A 99(6), 062311 (2019)

    Article  ADS  Google Scholar 

  8. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gao, F., Guo, F. Z., Wen, Q. Y., Zhu, F. C.: Quantum sharing of classical secret based on local operations. In: 2005 5th International Conference on Information Communications & Signal Processing, 986–988, IEEE (2005)

  12. Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019 (2010)

    Article  Google Scholar 

  13. Grice, W.P., Qi, B.: Quantum secret sharing using weak coherent states. Phys. Rev. A 100(2), 022339 (2019)

    Article  ADS  Google Scholar 

  14. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 14050.11–14050.14 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semi-quantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wang, M.M., Gong, L.M., Shao, L.H.: Efficient semiquantum key distribution without entanglement. Quantum Inf. Process. 18(9), 1–10 (2019)

  17. Tian, Y., Li, J., Yuan, K.G., et al.: An efficient semi-quantum key distribution protocol based on epr and single-particle hybridization. Quantum Inf. Comput. 21(07 & 8), 0563–0576 (2021)

    Google Scholar 

  18. Yang, C.W., Tsai, C.W.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 1–13 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18(7), 1–14 (2019)

  20. Li, Q., Chan, W.H., Long, D.Y.: Semi-quantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  21. Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)

    Article  MathSciNet  Google Scholar 

  23. Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on Bell states. Modern Phys. Lett. B 31(13), 1750150 (2017)

    Article  ADS  Google Scholar 

  24. Yin, A., Tong, Y.: A novel semi-quantum secret sharing scheme using entangled states. Modern Phys. Lett. B 32(22), 1850256 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Li, Z., Li, Q., Liu, C., et al.: Limited resource semi-quantum secret sharing. Quantum Inf. Process. 17(10), 285 (2018)

    Article  ADS  Google Scholar 

  26. Cao, G., Chen, C., Jiang, M.: A scalable and flexible multi-user semi-quantum secret sharing. In: Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering, 28–32, New York (2018)

  27. Tsai, C.W., Yang, C.W., Lee, N.Y.: Semi-quantum secret sharing protocol using W-state. Modern Phys. Lett. A 27(34), 1950213 (2019)

    Article  MathSciNet  Google Scholar 

  28. Yin, A., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60(1), 265–273 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities under Grant 2019XDA02, the National Natural Science Foundation of China under Grant 92046001 and 61962009, and the Open Research Project of the State Key Laboratory of Media Convergence and Communication under Grant KLMCC2020KF006. We also would like to thank the anonymous reviewers for their detailed review and valuable comments, which have enhanced the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, J., Chen, XB. et al. An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf Process 20, 217 (2021). https://doi.org/10.1007/s11128-021-03157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03157-2

Keywords

Navigation