Abstract
With the rapid growth of video and image technology, the binary classification of matrices has attracted much attention. In 2017, Duan et al. proposed a quantum algorithm for support matrix machines (QSMM) that efficiently addresses image classification problems. The QSMM consists of two core subroutines: an HHL algorithm and a quantum singularity threshold (QSVT) algorithm with complexities of \(O\left[ \kappa ^{3} \epsilon ^{-3} \log (N m n)\right] \) and \(O\left[ \log (m n)\right] \), respectively, where \(\kappa \) is the condition number of the corresponding matrix of the HHL algorithm, \(\epsilon \) is the expected accuracy of the output state, N is the number of samples in the training set and mn is the size of the feature space. The QSMM achieves an exponential increase in speed over classical counterparts. However, we find that Duan’s QSMM can be improved by applying an improved quantum matrix inversion (QMI) algorithm instead of the HHL algorithm. Compared with that of Duan’s QSMM, the dependence on precision of our improved QSMM (IQSMM) is exponentially improved, and the complexity of our first subroutine is as low as \(O[\kappa ^2\log ^{1.5}(\kappa / \epsilon ) \log (Nmn)]\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)
Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)
Kerenidis I, Prakash A.: Quantum recommendation systems. (2016). arXiv:1603.08675
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)
Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2), 022342 (2016)
Wang, G.: Quantum algorithm for linear regression. Phys. Rev. A 96(1), 012335 (2017)
Duan, B., Yuan, J., Liu, Y., Li, D.: Efficient quantum circuit for singular-value thresholding. Phys. Rev. A 98(1), 012308 (2018)
Yu, C.H., Gao, F., Liu, C., Huynh, D.: Quantum algorithm for visual tracking. Phys. Rev. A 99, 022301 (2019)
Rebentrost, P., Bromley, T.R., Weedbrook, C., Lloyd, S.: Quantum hopfield neural network. Phys. Rev. A 98, 042308 (2018)
Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96(3), 032301 (2017)
Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18, 073011 (2016)
Liu, Y., Zhang, S.: Fast quantum algorithms for least squares regression and statistic leverage scores. Theor. Comput. Sci. 657, 38–47 (2017)
Yu, C.H., Gao, F., Wen, Q.: An improved quantum algorithm for ridge regression. IEEE Trans. Knowl. Data Eng. 33(3), 858–866 (2021)
Wiebe, N., Kapoor, A. and Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. (2014). arXiv:1401.2142
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)
Rebentrost, P., Steffens, A., Marvian, I., Lloyd, S.: Quantum singular-value decomposition of nonsparse low-rank matrices. Phys. Rev. A 97(1), 012327 (2018)
Liao, Y., Ebler, D., Liu, F. and Dahlsten, O.: Quantum advantage in training binary neural networks. (2018). arXiv:1810.12948
Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 1–6 (2020)
Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)
Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 040502 (2018)
Situ, H., He, Z., Wang, Y., Li, L., Zheng, S.: Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2020)
Luo, L., Xie, Y., Zhang, Z. and Li, W.J.: Support matrix machines. In Proceedings of the 32nd International Conference on Machine Learning, volume 37, pages 938–947 (2015)
Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017)
Feng, X., Li, J., Huang, C., Li, J., Chen, R., Ke, J. and Ma, Z..: Quantum algorithm for support vector machine with exponentially improved dependence on precision. In International Conference on Artificial Intelligence and Security, pages 578–587. Springer (2019)
Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)
Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019)
Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)
Acknowledgements
This work is supported by the Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201922), the Fundamental Research Funds for the Central Universities (No. 21620433), and the National Natural Science Foundation of China (No. 61802118).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, Y., Song, T. & Wu, Z. An improved quantum algorithm for support matrix machines. Quantum Inf Process 20, 229 (2021). https://doi.org/10.1007/s11128-021-03160-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03160-7