Skip to main content

Advertisement

Log in

An improved quantum algorithm for support matrix machines

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

With the rapid growth of video and image technology, the binary classification of matrices has attracted much attention. In 2017, Duan et al. proposed a quantum algorithm for support matrix machines (QSMM) that efficiently addresses image classification problems. The QSMM consists of two core subroutines: an HHL algorithm and a quantum singularity threshold (QSVT) algorithm with complexities of \(O\left[ \kappa ^{3} \epsilon ^{-3} \log (N m n)\right] \) and \(O\left[ \log (m n)\right] \), respectively, where \(\kappa \) is the condition number of the corresponding matrix of the HHL algorithm, \(\epsilon \) is the expected accuracy of the output state, N is the number of samples in the training set and mn is the size of the feature space. The QSMM achieves an exponential increase in speed over classical counterparts. However, we find that Duan’s QSMM can be improved by applying an improved quantum matrix inversion (QMI) algorithm instead of the HHL algorithm. Compared with that of Duan’s QSMM, the dependence on precision of our improved QSMM (IQSMM) is exponentially improved, and the complexity of our first subroutine is as low as \(O[\kappa ^2\log ^{1.5}(\kappa / \epsilon ) \log (Nmn)]\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  2. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)

    Article  ADS  Google Scholar 

  3. Kerenidis I, Prakash A.: Quantum recommendation systems. (2016). arXiv:1603.08675

  4. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  5. Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2), 022342 (2016)

    Article  ADS  Google Scholar 

  6. Wang, G.: Quantum algorithm for linear regression. Phys. Rev. A 96(1), 012335 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  7. Duan, B., Yuan, J., Liu, Y., Li, D.: Efficient quantum circuit for singular-value thresholding. Phys. Rev. A 98(1), 012308 (2018)

    Article  ADS  Google Scholar 

  8. Yu, C.H., Gao, F., Liu, C., Huynh, D.: Quantum algorithm for visual tracking. Phys. Rev. A 99, 022301 (2019)

    Article  ADS  Google Scholar 

  9. Rebentrost, P., Bromley, T.R., Weedbrook, C., Lloyd, S.: Quantum hopfield neural network. Phys. Rev. A 98, 042308 (2018)

    Article  ADS  Google Scholar 

  10. Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96(3), 032301 (2017)

    Article  ADS  Google Scholar 

  11. Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18, 073011 (2016)

    Article  ADS  Google Scholar 

  12. Liu, Y., Zhang, S.: Fast quantum algorithms for least squares regression and statistic leverage scores. Theor. Comput. Sci. 657, 38–47 (2017)

    Article  MathSciNet  Google Scholar 

  13. Yu, C.H., Gao, F., Wen, Q.: An improved quantum algorithm for ridge regression. IEEE Trans. Knowl. Data Eng. 33(3), 858–866 (2021)

    Google Scholar 

  14. Wiebe, N., Kapoor, A. and Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. (2014). arXiv:1401.2142

  15. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  16. Rebentrost, P., Steffens, A., Marvian, I., Lloyd, S.: Quantum singular-value decomposition of nonsparse low-rank matrices. Phys. Rev. A 97(1), 012327 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  17. Liao, Y., Ebler, D., Liu, F. and Dahlsten, O.: Quantum advantage in training binary neural networks. (2018). arXiv:1810.12948

  18. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 1–6 (2020)

    Article  Google Scholar 

  19. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)

    Article  Google Scholar 

  20. Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 040502 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  21. Situ, H., He, Z., Wang, Y., Li, L., Zheng, S.: Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2020)

    Article  MathSciNet  Google Scholar 

  22. Luo, L., Xie, Y., Zhang, Z. and Li, W.J.: Support matrix machines. In Proceedings of the 32nd International Conference on Machine Learning, volume 37, pages 938–947 (2015)

  23. Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017)

    Article  MathSciNet  Google Scholar 

  24. Feng, X., Li, J., Huang, C., Li, J., Chen, R., Ke, J. and Ma, Z..: Quantum algorithm for support vector machine with exponentially improved dependence on precision. In International Conference on Artificial Intelligence and Security, pages 578–587. Springer (2019)

  25. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  26. Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019)

    Article  Google Scholar 

  27. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201922), the Fundamental Research Funds for the Central Universities (No. 21620433), and the National Natural Science Foundation of China (No. 61802118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, T. & Wu, Z. An improved quantum algorithm for support matrix machines. Quantum Inf Process 20, 229 (2021). https://doi.org/10.1007/s11128-021-03160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03160-7

Keywords

Navigation