Abstract
Peev et al. (Int J Quantum Inf 03:225–231, 2005) introduced a key-efficient two-step hash function for authentication in quantum key distribution (QKD). They suggested using a publicly known hash function as part of this scheme. Improving on this, Pacher et al. (Quantum Inf Process 15:327–362, 2016) suggested a method to restore information-theoretic security (ITS) by using almost universal hash functions instead of publicly known hash functions. While their scheme is a key-efficient almost-strongly universal (ASU) family, like any other ASU family, it only provides a one-time MAC. Here, we propose the use of a MAC paradigm called PRF(Hash, Nonce) for authentication in QKD. This MAC has several advantages which make it suited for QKD. In particular, unlike the above constructions, it is a many-time MAC and is also more key-efficient. In fact, PRF(Hash, Nonce) is even more key-efficient than the Wegman–Carter paradigm, the most widely used MAC scheme for authentication in QKD. Furthermore, it provides everlasting security, which means that if authentication remains unbroken during the execution of QKD, then the resulting keys retain ITS, which guarantees that the adversary cannot gain any new information on the keys even with unlimited computational power.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alléaume, R., Branciard, C., Bouda, J., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Länger, T., Lütkenhaus, N., Monyk, C., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: Using quantum key distribution for cryptographic purposes: a survey. Theor. Comput. Sci. 560, 62–81 (2014). Theoretical Aspects of Quantum Cryptography - celebrating 30 years of BB84
Stebila, D., Mosca, M., Lütkenhaus, N.: The case for quantum key distribution. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds.) Quantum Communication and Quantum Networking, pp. 283–296. Springer, Berlin, Heidelberg (2010)
Unruh, D.: Everlasting multi-party computation. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology—CRYPTO 2013, pp. 380–397 (2013)
Sasaki, M.: Quantum key distribution and its applications. IEEE Secur. Priv. 16(5), 42–48 (2018)
Peev, M., Nölle, M., Maurhart, O., Lorünser, T., Suda, M., Poppe, A., Ursin, R., Fedrizzi, A., Zeilinger, A.: A novel protocol-authentication algorithm ruling out a man-in-the-middle attack in quantum cryptography. Int. J. Quantum Inf. 03, 225–231 (2005)
Abidin, A., Larsson, J.-Å.: Vulnerability of ‘a novel protocol-authentication algorithm ruling out a man-in-the-middle attack in quantum cryptography’. Int. J. Quantum Inf. 07, 1047–1052 (2009)
Pacher, C., Abidin, A., Lorünser, T., Peev, M., Ursin, R., Zeilinger, A., Larsson, J.-Å.: Attacks on quantum key distribution protocols that employ non-ITS authentication. Quantum Inf. Process. 15, 327–362 (2016)
Price, A., Rarity, J., Erven, C.: A quantum key distribution protocol for rapid denial of service detection. EPJ Quantum Technol. 7, 8 (2020)
Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., Yoshino, K., Nambu, Y., Takahashi, S., Tajima, A., Tomita, A., Domeki, T., Hasegawa, T., Sakai, Y., Kobayashi, H., Asai, T., Shimizu, K., Tokura, T., Tsurumaru, T., Matsui, M., Honjo, T., Tamaki, K., Takesue, H., Tokura, Y., Dynes, J.F., Dixon, A.R., Sharpe, A.W., Yuan, Z.L., Shields, A.J., Uchikoga, S., Legré, M., Robyr, S., Trinkler, P., Monat, L., Page, J.-B., Ribordy, G., Poppe, A., Allacher, A., Maurhart, O., Länger, T., Peev, M., Zeilinger, A.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)
Stucki, D., Legré, M., Buntschu, F., Clausen, B., Felber, N., Gisin, N., Henzen, L., Junod, P., Litzistorf, G., Monbaron, P., Monat, L., Page, J.-B., Perroud, D., Ribordy, G., Rochas, A., Robyr, S., Tavares, J., Thew, R., Trinkler, P., Ventura, S., Voirol, R., Walenta, N., Zbinden, H.: Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13(12), 123001 (2011)
Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and secure message authentication. In: Advances in Cryptology—CRYPTO’99, vol. 1666 of Lecture Notes in Computer Science, pp. 216–233 (1999)
Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)
Portmann, C.: Key recycling in authentication. IEEE Trans. Inf. Theory 60(7), 4383–4396 (2014)
Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Advances in Cryptology—EUROCRYPT 2004, vol. 3027 of Lecture Notes in Computer Science, pp. 523–540 (2004)
Halevi, S., Krawczyk, H.: MMH: software message authentication in the Gbit/second rates. In: Biham, E. (Ed.) Fast Software Encryption—FSE’97, vol. 1267 of Lecture Notes in Computer Science, pp. 172–189 (1997)
Gilbert, E.N., Macwilliams, F.J., Sloane, N.J.A.: Codes which detect deception. Bell Syst. Tech. J. 53(3), 405–424 (1974)
Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based MAC algorithms. In: Wagner, D. (ed.) Advances in Cryptology—CRYPTO’08, Lecture Notes in Computer Science, pp. 144–161 (2008)
Hayashi, M.: General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel. IEEE Trans. Inf. Theory 52(4), 1562–1575 (2006)
Hayashi, M.: Exponential decreasing rate of leaked information in universal random privacy amplification. IEEE Trans. Inf. Theory 57(6), 3989–4001 (2011)
Renner, R., Wolf, S.: Simple and tight bounds for information reconciliation and privacy amplification. In: Advances in Cryptology—ASIACRYPT 2005, Lecture Notes in Computer Science, pp. 199–216 (2005)
Rogaway, P.: Bucket hashing and its application to fast message authentication. In: Coppersmith, D. (ed.) Advances in Cryptology—CRYPTO’ 95, vol. 12 of Lecture Notes in Computer Science, pp. 29–42 (1995)
Tyagi, H., Vardy, A.: Universal hashing for information-theoretic security. Proc. IEEE 103(10), 1781–1795 (2015)
Cramer, R., Damgård, I.B., Döttling, N., Fehr, S., Spini, G.: Linear secret sharing schemes from error correcting codes and universal hash functions. In: Oswald, E., Fischlin, M. (Eds.) Advances in Cryptology—EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, vol. 9057 of Lecture Notes in Computer Science, pp. 313–336. Springer (2015)
Stinson, D.R.: On the connections between universal hashing, combinatorial designs and error-correcting codes. Congr. Numer. 114, 7–27 (1996)
Håstad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Nisan, N.: Pseudorandom generators for space-bounded computations. Combinatorica 12(4), 449–461 (1992)
Rudich, S., Wigderson, A.: Computational Complexity Theory, vol. 10 of IAS/Park City Mathematics Series. American Mathematical Society, Philadelphia (2004)
Sipser, M.: A complexity theoretic approach to randomness. In: ACM Symposium on Theory of Computing—STOC’83, STOC ’83, pp. 330–335 (1983)
Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: Symposium on Foundations of Computer Science—SFCS’89, pp. 248–253 (1989)
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
Pagh, A., Pagh, R.: Uniform hashing in constant time and optimal space. SIAM J. Comput. 38(1), 85–96 (2008)
Siegel, A.: On universal classes of extremely random constant-time hash functions. SIAM J. Comput. 33(3), 505–543 (2004)
Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In: ACM-SIAM Symposium on Discrete Algorithms—SODA ’10, pp. 938–948 (2010)
Leiserson, C.E., Schardl, T.B., Sukha, J.: Deterministic parallel random-number generation for dynamic-multithreading platforms. In: ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming—PPoPP’12, pp. 193–204 (2012)
Ritchie, R., Bibak, K.: SQUAREMIX: a faster pseudorandom number generator for dynamic-multithreading platforms. In: 2020 Data Compression Conference (DCC), p. 391 (2020)
Ritchie, R., Bibak, K.: DOTMIX-Pro: faster and more efficient variants of DOTMIX for dynamic-multithreading platforms. J. Supercomput. (2021). https://doi.org/10.1007/s11227-021-03904-3
Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) Advances in Cryptology—CRYPTO ’94, Lecture Notes in Computer Science, pp. 129–139 (1994)
Stinson, D.R.: Universal hashing and authentication codes. Des. Codes Cryptogr. 4(3), 369–380 (1994)
Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)
Boesgaard, M., Christensen, T., Zenner, E.: Badger—a fast and provably secure MAC. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) Applied Cryptography and Network Security, pp. 176–191. Springer, Berlin, Heidelberg (2005)
Minematsu, K., Tsunoo, Y.: Provably secure MACs from differentially-uniform permutations and AES-based implementations. In: Robshaw, M. (ed.) Fast Software Encryption—FSE’06, Lecture Notes in Computer Science, pp. 226–241 (2006)
Duval, S., Leurent, G.: Lightweight MACs from universal hash functions. In: Smart Card Research and Advanced Applications, vol. 11833 of Lecture Notes in Computer Science, pp. 195–215 (2020)
ISO/IEC 9797-1:2011: Information technology—security techniques—message authentication codes (MACs)—part 1: mechanisms using a block cipher (2011)
Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key constructions. In: Advances in Cryptology—CRYPTO’00, vol. 1880 of Lecture Notes in Computer Science, pp. 197–215 (2000)
Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) Fast Software Encryption—FSE’03, vol. 2887 of Lecture Notes in Computer Science, pp. 129–153 (2003)
Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC—addendum (2003)
Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Advances in Cryptology—EUROCRYPT’02, vol. 2332 of Lecture Notes in Computer Science, pp. 384–397 (2002)
Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) Advances in Cryptology—CRYPTO ’96, Lecture Notes in Computer Science, pp. 1-15 (1996)
McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) Progress in Cryptology—INDOCRYPT 2004, Lecture Notes in Computer Science, pp. 343–355 (2005)
Bernstein, D.: The Poly1305-AES message-authentication code. In: Fast Software Encryption—FSE’05, vol. 3557 of Lecture Notes in Computer Science, pp. 32–49 (2005)
Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography, 0.5 ed. (2020)
Brassard, G.: On computationally secure authentication tags requiring short secret shared keys. In: Advances in Cryptology—CRYPTO ’82
Shoup, V.: On fast and provably secure message authentication based on universal hashing. In: Koblitz, N. (ed.) Advances in Cryptology—CRYPTO ’96, Lecture Notes in Computer Science, pp. 313–328 (1996)
Joux, A.: Authentication failures in NIST version of GCM. Comments submitted to NIST Modes of Operation Process (2006)
Abidin, A., Larsson, J.-Å.: New universal hash functions. In: Armknecht, F., Lucks, S. (eds.) Research in Cryptology, pp. 99–108. Springer, Berlin (2012)
Beth, T., Müller-Quade, J., Steinwandt, R.: Cryptanalysis of a practical quantum key distribution with polarization-entangled photons. Quantum Inf. Comput. 5(3), 181–186 (2005)
Mehlhorn, K., Vishkin, U.: Randomized and deterministic simulations of PRAMs by parallel machines with restricted granularity of parallel memories. Acta Inform. 21(4), 339–374 (1984)
Johansson, T., Kabatianskii, G., Smeets, B.: On the relation between a-codes and codes correcting independent errors. In: Helleseth, T. (ed.) Advances in Cryptology—EUROCRYPT ’93, (Berlin, Heidelberg), pp. 1–11. Springer, Berlin (1994)
Kabatianskii, G.A., Smeets, B., Johansson, T.: On the cardinality of systematic authentication codes via error-correcting codes. IEEE Trans. Inf. Theory 42(2), 566–578 (1996)
Krovetz, T.D.: Software-optimized universal hashing and message authentication. Ph.D thesis, University of California, Davis (2000)
Black, J., Cochran, M.: MAC reforgeability. In: Fast Software Encryption—FSE’09, vol. 5665 of Lecture Notes in Computer Science, pp. 345–362 (2009)
Bibak, K., Ritchie, R., Zolfaghari, B.: Everlasting security of quantum key distribution with 1K-DWCDM and quadratic hash. Quantum Inf. Comput. 21(3 & 4), 181–202 (2021)
Thorup, M.: High speed hashing for integers and strings. arXiv:1504.06804 (2020)
Krovetz, T.D., Rogaway, P.: Software-optimized universal hashing and message authentication. University of California, Davis (2000)
Acknowledgements
The authors would like to thank the editor and the referees for carefully reading the paper and for their useful comments which helped improve the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bibak, K., Ritchie, R. Quantum key distribution with PRF(Hash, Nonce) achieves everlasting security. Quantum Inf Process 20, 228 (2021). https://doi.org/10.1007/s11128-021-03164-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03164-3