Abstract
We investigate discrete-time coined quantum walks on the Sierpinski gasket and the Sierpinski tetrahedron which have non-integer dimensions, by concentrating on the probability distribution, return probability and standard deviation. We compare the calculating results with classical random walks on the two fractal structures and quantum walks on the corresponding regular triangle grids. For the quantum walks, we adopt DFT coin and Grover coin, respectively, which exhibit great differences on the above quantities.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-Dimensional Quantum Walks. STOC ‘01, Hersonissos, Greece, pp. 37-49. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/380752.380757
Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum Walks on Graphs. In: Proc. 33rd STOC, Hersonissos, Greece, STOC ‘01, pp. 50–59. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/380752.380758
Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential Algorithmic Speedup by a Quantum Walk. In: Proc. 35th ACM Symposium on Theory of Computing. STOC ‘03, San Diego, CA, USA, pp. 59-68. Association for Computing Machinery, New York (2003). https://doi.org/10.1145/780542.780552
Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993). https://doi.org/10.1103/PhysRevA.48.1687
Machida, T., Chandrashekar, C.M.: Localization and limit laws of a three-state alternate quantum walk on a two-dimensional lattice. Phys. Rev. A 92, 062307 (2015). https://doi.org/10.1103/PhysRevA.92.062307
Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307 (2003)
Baryshnikov, Y., Brady, W., Bressler, A., Pemantle, R.: Two-dimensional quantum random walk. J. Stat. Phys 142(1), 78 (2011)
Patel, A., Raghunathan, K.S.: Search on a fractal lattice using a quantum random walk. Phys. Rev. A 86, 012332 (2012). https://doi.org/10.1103/PhysRevA.86.012332
Tamegai, S., Watabe, S., Nikuni, T.: Spatial search on Sierpinski carpet using quantum walk. J. Phys. Soc. Jpn. 87(8), 085003 (2018). https://doi.org/10.7566/JPSJ.87.085003
Sato, R., Nikuni, T., Watabe, S.: Scaling hypothesis of a spatial search on fractal lattices using a quantum walk. Phys. Rev. A 101, 022312 (2020). https://doi.org/10.1103/PhysRevA.101.022312
Rammal, R., Toulouse, G.: Random walks on fractal structures and percolation clusters. J. Physique Lett. 44(1), 13–22 (1983). https://doi.org/10.1051/jphyslet:0198300440101300
O’Shaughnessy, B., Procaccia, I.: Diffusion on fractals. Phys. Rev. A 32, 3073 (1985). https://doi.org/10.1103/PhysRevA.32.3073
Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)
Zhang, J.: Fractal. Tsinghua University Press, Beijing (1995)
Balankin, A.S.: Effective degrees of freedom of a random walk on a fractal. Phys. Rev. E 92, 062146 (2015). https://doi.org/10.1103/PhysRevE.92.062146
Lara, P.C.S., Portugal, R., Bottcher, S.: Quantum walks on Sierpinski gaskets. Int. J. Quantum Inf. 11(08), 1350069 (2013). https://doi.org/10.1142/S021974991350069X
Ambainis, A., Kempe, J., Rivosh, A.: Coins Make Quantum Walks Faster. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’05, Vancouver, British Columbia, pp. 1099-1108. Society for Industrial and Applied Mathematics, USA (2005)
Lovett, N.B., Everitt, M., Trevers, M., Mosby, D., Stockton, D., Kendon, V.: Spatial search using the discrete time quantum walk. Nat. Comput. 11(1), 23 (2012)
Abal, G., Siri, R., Romanelli, A., Donangelo, R.: Quantum walk on the line: entanglement and nonlocal initial conditions. Phys. Rev. A 73, 042302 (2006). https://doi.org/10.1103/PhysRevA.73.042302
Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004). https://doi.org/10.1103/PhysRevA.69.052323
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xie, HH., Zeng, GM. Quantum walks on Sierpinski gasket and Sierpinski tetrahedron. Quantum Inf Process 20, 240 (2021). https://doi.org/10.1007/s11128-021-03171-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03171-4