Skip to main content

Advertisement

Log in

Quantum sealed-bid auction protocol for simultaneous ascending auction with GHZ states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a quantum sealed-bid auction (QSBA) protocol based on GHZ states and realize the simultaneous ascending auction scheme proposed by the 2020 Nobel Prize in economics. The protocol uses the trusted third-party Trent as a bridge between bidders and auction center to conduct multiple rounds of auctions. With the help of Trent, the auction center and bidders conduct controlled remote state preparation, so that the auction center can obtain all the bidding prices and publish them. The whole process is supervised by Trent, which not only ensures the trust between participants, but also effectively prevents the semi-honest auction center from disclosing the information of bidders. Trent is very important to the security of the whole protocol, so we assume that Trent is completely honest. In addition, we analyze the security and efficiency of the protocol, which proves that our protocol has high security and good efficiency. Therefore, this agreement is practicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. Tsai, C.W., Lin, J.: Fault-tolerant Remote Quantum Entanglement Establishment for Secure Quantum Communications. Int. J. Theor. Phys. 55(7), 3200–3206 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chen, X.B., Wang, T.Y., Du, J.Z., Wen, Q.Y., Zhu, F.C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quant. Inform. 6(03), 543–551 (2008)

    Article  Google Scholar 

  4. Song, L., Qiao, Y., et al.: Quantum secure direct communication with χ-type entangled states[J]. Phys. Rev. A 78(6), 64304–64304 (2008)

    Article  Google Scholar 

  5. Zhang, Z.J.: Multiparty quantum secret sharing[J]. Phys. Lett. A 342(1), 60–66 (2004)

    ADS  Google Scholar 

  6. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information[J]. Quant. Inf. Proc. (2013). https://doi.org/10.1007/s11128-012-0379-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Jiang, D.H., Wang, J., Liang, X.Q., et al.: Quantum voting scheme based on locally indistinguishable orthogonal product states[J]. Int. J. Theor. Phys. 59(2), 436–444 (2020)

    Article  MathSciNet  Google Scholar 

  8. Cai, X.Q., Wang, X.X., Wang, T.Y.: Fair and Optimistic Contract Signing Based on Quantum Cryptography[J]. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04236-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Christian. C. Efficient private bidding and auctions with an oblivious third party[P]. Computer and communications security, (1999).

  10. Edward. W., Piotrowski, Jan. S.: Quantum auctions: Facts and myths[J]. Phy A Stat Mech Appl 387(15), 3949–3953 (2008).

  11. Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282(9), 1939–1943 (2009)

    Article  ADS  Google Scholar 

  12. Qin, S.J., Gao, F., Wen, Q.Y., Meng, L.M., Zhu, F.C.: Cryptanalysis and improvement of a secure quantum sealed-bid auction. Opt. Commun. 282(19), 4014–4016 (2009)

    Article  ADS  Google Scholar 

  13. Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)

    Article  ADS  Google Scholar 

  14. Zhao, Z., Naseri, M., Zheng, Y.: Secure quantum sealed-bid auction with post-confirmation. Opt. Commun. 283(16), 3194–3197 (2010)

    Article  ADS  Google Scholar 

  15. Zhang-Yin, W.: Quantum Secure Direct Communication and Quantum Sealed-Bid Auction with EPR Pairs. Commun. Theoret. Phys. 54(6), 997 (2010)

    Article  ADS  Google Scholar 

  16. Wen-Jie, L., Fang, W., Sai, J., Zhi-Guo, Q., Xiao-Jun, W.: Attacks and Improvement of Quantum Sealed-Bid Auction with EPR Pairs. Commun. Theor. Phys. 61(6), 686 (2014)

    Article  ADS  Google Scholar 

  17. Liu, W.J., Wang, H.B., Yuan, G.L., Xu, Y., Chen, Z.Y., An, X.X., Gnitou, G.T.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quant. Inf. Process. 15(2), 869–879 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhang, R., Shi, R.H., Qin, J.Q., Peng, Z.W.: An economic and feasible Quantum Sealed-bid Auction protocol. Quant. Inf. Process. 17(2), 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, K.J., Kwek, L.C., Ma, C.G., Zhang, L., Sun, H.W.: Security analysis with improved design of post-confirmation mechanism for quantum sealed-bid auction with single photons. Quant. Inf. Process. 17(2), 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Liu, G., Zhang, J.Z., Xie, S.C.: Multiparty Sealed-Bid Auction Protocol Based on the Correlation of Four-Particle Entangled State. Int. J. Theor. Phys. 57(10), 3141–3148 (2018)

    Article  Google Scholar 

  21. Shi, R.H., Zhang, R., Liu, B., Zhang, M.: Cryptanalysis and Improvement of Quantum Sealed-Bid Auction. Int. J. Theor. Phys. 59(6), 1917–1926 (2020)

    Article  MathSciNet  Google Scholar 

  22. Han, Y.T., Zhang, Y.H, Liang, X.Q.: Quantum Sealed-Bid Auction Protocol Based on Semi-honest Model[J]. Int. J. Theor. Phy. 59, 3778-3788 (2020)

  23. Milgrom, P.: Putting auction theory to work: the simultaneous ascending auction. J. Pol. Econ. 108(2), 245–272 (2000)

    Article  Google Scholar 

  24. Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quant. Inf. Process. 16(3), 70 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, Y.-W., Zhan, Y.-B.: A theoretical scheme for zero-knowledge proof quantum identity authentication[J]. Acta Physica Sinica 58(11), 7668–7671 (2009)

    Article  MathSciNet  Google Scholar 

  26. Luo, Y., Zhao, Z., Zhao, Z., Long, H., Su, W., Yang, Y.: The loophole of the improved secure quantum sealed-bid auction with post-confirmation and solution. Quant. Inf. Process. 12(1), 295–302 (2013)

    Article  ADS  Google Scholar 

  27. Naseri, M.: Secure quantum sealed-bid auction[J]. Opt. Commun. 282(9), 1939–1943 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Liaoning Provincial Natural Science Foundation of China (Grant No. 2019-MS-286), and Basic Scientific Research Project of Liaoning Provincial Department of Education (Grant No. LJC202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Zhu.

Ethics declarations

Conflict of interest

The author declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, Z., Wang, C. et al. Quantum sealed-bid auction protocol for simultaneous ascending auction with GHZ states. Quantum Inf Process 20, 232 (2021). https://doi.org/10.1007/s11128-021-03173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03173-2

Keywords