Abstract
Using pre-shared entangled states between the encoder and the decoder, we provide a previously unreported coding-theoretic framework for constructing entanglement-assisted stabilizer codes over qudits of dimension \(p^k\) from first principles, where p is prime and \(k \in {\mathbb {Z}}^+\). We introduce the concept of mathematically decomposing a qudit of dimension \(p^k\) into k subqudits, each of dimension p. Our contributions toward the entanglement-assisted stabilizer coding framework over qudits are multi-fold as follows: (a) We study the properties of the code and derive an analytical expression for the minimum number of pre-shared entangled subqudits required to construct the code. (b) We provide a code construction procedure that involves obtaining the explicit form of the stabilizers of the code. (c) We show that the proposed entanglement-assisted qudit stabilizer codes are analogous to classical additive codes over \({\mathbb {F}}_{p^k}\). (d) We provide the quantum coding bounds, such as the quantum Hamming bound, the quantum Singleton bound, and the quantum Gilbert–Varshamov bound for non-degenerate entanglement-assisted stabilizer codes over qudits. (e) We finally demonstrate that the error correction capability of the code can be increased with entanglement assistance. The proposed framework is useful for realizing coded quantum computing and communication systems over \(p^k\)-dimensional qudits.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
We note that stabilizer codes are analogous to classical additive codes. Classical additive codes are more generalized compared to classical linear codes.
We note that the quantum Hamming bound \(\sum \nolimits _{ i=0}^{\lfloor \frac{d-1}{2}\rfloor }\left( {\begin{array}{c}n\\ i\end{array}}\right) 3^i \le 2^{n-m+c_e}\) for an \([[n,m,d';c_e]]\) qubit stabilizer code [30], i.e., \(((n,2^m,d';c_e))\) code, is obtained by substituting \(q=p=2\), \(k=1\), \(n_e'=c_e\), and \(K=2^m\) (as K is the code dimension) in the bound provided in Theorem 9. We note that the rest of the bounds for other special cases can be obtained similarly.
References
Terhal, B.M.: Quantum error correction for quantum memories. Rev. Mod. Phys. 87(2), 307–346 (2015)
Shor, P.W.: Scheme for Reducing Decoherence in Quantum Computer Memory. Phys. Rev. A 52(4), 2493–2496 (1995)
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)
Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. dissertation, CalTech (1997)
Terhal, B.M.: Quantum error correction for quantum memories. Rev. Mod. Phys. 87(2), 307–346 (2015)
Raina, A., Nadkarni, P.J., Garani, S.S.: Recovery of quantum information from a node failure in a graph. Quant. Inf. Process. 19, 70 (2020)
Nadkarni, P.J., Raina, A., Garani, S.S.: Modified graph-state codes for single-node recovery in quantum distributed storage. Phys. Rev. A. 102, 062430 (2020)
Brun, T., Devetak, I., Hsieh, M.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)
Lai, C.-Y., Brun, T.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88(1), 012320 (2013)
Godfrin, C., Ferhat, A., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F.: Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119(187702) (2017)
Imany, P., Jaramillo-Villegas, J.A., Alshaykh, M.S., Lukens, J.M., Odele, O.D., Moore, A.J., Leaird, D.E., Qi, M., Weiner, A.M.: High-dimensional optical quantum logic in large operational spaces. npj Quantum Inf. 5(59) (2019). https://doi.org/10.1038/s41534-019-0173-8
Gedik, Z., Silva, I.A., Çakmak, B., Karpat, G., Vidoto, E.L.G., Soares-Pinto, D.O., deAzevedo, E.R., Fanchini, F.F.: Computational speed-up with a single qudit. Sci. Rep. 5(14671) (2015). https://doi.org/10.1038/srep14671
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)
Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Prentice-Hall, USA (2004)
MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes, 2nd edn. North-holland Publishing Company (1978)
Artin, M.: Algebra. 2nd ed. London: Pearson Ed. (2015)
Riguang, L., Zhi, M.: Non-binary Entanglement-assisted Stabilizer Quantum Codes. arXiv:1105.5872
Luo, L., Ma, Z., Wei, Z., Leng, R.: Non-binary Entanglement-assisted Quantum Stabilizer Codes. Sci. China Inf. Sci. 60(4) (2016)
Shao, J., Zhou, L., Sun, Y.: Entanglement-assisted Nonbinary Quantum LDPC Codes with Finite Field Method. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, 99–103 (2018). https://doi.org/10.1109/ICIEA.2018.8397697
Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)
Hurley, T., Hurley, D., Hurley, B.: Entanglement-assisted Quantum Error-correcting Codes from Units. arXiv:1806.10875 (2018)
Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quant. Inf. Processing 18(4) (2019)
Grassl, M., Roetteler, M., Beth, T.: Efficient quantum circuits for non-qubit quantum error-correcting codes. Int. J. Found. Comput. Sci. 14(5), 757–775 (2003)
Wilde, M.M.: Quantum Coding with Entanglement. Ph.D. dissertation, Univ. of South. Cal. (2008)
Hsieh, M., Brun, T., Devetak, I.: Entanglement-assisted Quantum Quasicyclic Low-density Parity-check Codes. Phys. Rev. A 79 (3) (2009)
Nadkarni, P.J., Garani, S.S.: Entanglement assisted binary quantum tensor product codes. Inf. Th. Workshop, Kaohsiung, Taiwan (2017)
Nadkarni, P.J., Garani, S.S.: Encoding of Quantum Stabilizer Codes over Qudits with \(d=p^k\). Quantum Communication and Information Technology Workshop, IEEE GLOBECOM, Abu Dhabi (2018)
Lai, C., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64(1), 622–639 (2018)
Nadkarni, P.J., Garani, S.S.: Entanglement assisted quantum reed-solomon codes. In: Information Theory and Applications Workshop, San Diego, USA (2019)
Nadkarni, P.J., Garani, S.S.: Entanglement-assisted Reed–Solomon codes over qudits: theory and architecture. Quant. Inf. Process. 20(4), 129 (2021)
Nadkarni, P. J., Garani, S. S.: Coding analog of superadditivity using entanglement-assisted quantum tensor product codes over \({\mathbb{F}}_{p^k}\). IEEE Trans. Quant. Eng. 1(2101417), 1–17 (2020). https://doi.org/10.1109/TQE.2020.3027035
Nadkarni, P.J., Garani, S.S.: Encoding of nonbinary entanglement-unassisted and assisted stabilizer codes. IEEE Trans. Quant. Eng. 2, 2100322 (2021). https://doi.org/10.1109/TQE.2021.3050848
Nadkarni, P.J., Garani, S.S.: Quantum error correction architecture for Qudit stabilizer codes. Phys. Rev. A. 103, 042420 (2021)
Supplementary Material
Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd edn. Cambridge University Press, Cambridge (2017)
Strang, G.: Linear Algebra and its Applications, 4th ed. Cengage, Boston, MA (2006)
Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)
Grassl, M.: Entanglement-assisted quantum communication beating the quantum singleton bound. Phys. Rev. A. 103(2), L020601 (2021)
Farinholt, J.M.: An ideal characterization of the Clifford Operators. J. Phys. A: Math. Theor. 47(30) (2014)
Niehage, A., Gottesman, D.: Quantum error correction/co639. https://www.perimeterinstitute.ca/personal/dgottesman/CO639-2004/Lecture8.pdf (2004)
Acknowledgements
The PhD work of P. J. Nadkarni is funded by a fellowship from the Ministry of Electronics & Information Technology (MeitY), Government of India. S. S. Garani acknowledges the Ministry of Human Resource and Development (MHRD), Government of India, for support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Nadkarni, P.J., Garani, S.S. Non-binary entanglement-assisted stabilizer codes. Quantum Inf Process 20, 256 (2021). https://doi.org/10.1007/s11128-021-03174-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03174-1