Abstract
We investigate the nonlocal advantage of quantum coherence (NAQC) and quantum discord (QD) for both the thermal equilibrium state and all eigenstates of the Heisenberg XXX chain. It is shown that both the NAQC and QD of two neighboring spins are completely determined by a thermodynamic potential, i.e., the internal energy for the thermal equilibrium state and the kth-level eigenenergy for the kth-level eigenstate. From the dependence of the NAQC and QD on the internal energy, we further show that they approach to their thermodynamic limits very quickly with an increase in the number of spins in the chain. We also investigate the NAQC and QD versus energy in the anisotropic Heisenberg XXZ model.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ficek, Z., Swain, S.: Quantum interference and coherence: theory and experiments. Springer, Berlin (2005)
Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)
Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)
Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)
Hu, M.L., Hu, X., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)
Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)
Bu, K., Singh, U., Fei, S.M., Pati, A.K., Wu, J.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)
Hu, M.L., Fan, H.: Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A 95, 052106 (2017)
Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A 50, 285301 (2017)
Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97, 032342 (2018)
de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A 50, 045301 (2017)
Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016)
Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)
Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)
Yao, Y., Dong, G.H., Ge, L., Li, M., Sun, C.P.: Maximal coherence in a generic basis. Phys. Rev. A 94, 062339 (2016)
Hu, M.L., Shen, S.Q., Fan, H.: Maximum coherence in the optimal basis. Phys. Rev. A 96, 052309 (2017)
Yu, C.S., Yang, S.R., Guo, B.Q.: Total quantum coherence and its applications. Quantum Inf. Process. 15, 3773 (2016)
Streltsov, A., Kampermann, H., Wölk, S., Gessner, M., Bruß, D.: Maximal coherence and the resource theory of purity. New J. Phys. 20, 053058 (2018)
Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)
Yuan, X., Bai, G., Peng, T., Ma, X.: Quantum uncertainty relation using coherence. Phys. Rev. A 96, 032313 (2017)
Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)
Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)
Regula, B., Fang, K., Wang, X., Adesso, G.: One-shot coherence distillation. Phys. Rev. Lett. 121, 010401 (2018)
Fang, K., Wang, X., Lami, L., Regula, B., Adesso, G.: Probabilistic distillation of quantum coherence. Phys. Rev. Lett. 121, 070404 (2018)
Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)
Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)
Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)
Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)
Hu, M.L., Fan, H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A 91, 052311 (2015)
Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)
Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)
Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (2016)
Silva, I.A., Souza, A.M., Bromley, T.R., Cianciaruso, M., Marx, R., Sarthour, R.S., Oliveira, I.S., Franco, R.L., Glaser, S.J., deAzevedo, E.R., Soares-Pinto, D.O., Adesso, G.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)
Zhang, A., Zhang, K., Zhou, L., Zhang, W.: Frozen condition of quantum coherence for atoms on a stationary trajectory. Phys. Rev. Lett. 121, 0736602 (2018)
Hu, M., Zhou, W.: Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 (2019)
Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. (N.Y.) 366, 102 (2016)
Guarnieri, G., Kolář, M., Filip, R.: Steady-state coherences by composite system-bath interactions. Phys. Rev. Lett. 121, 070401 (2018)
Mukhopadhyay, C.: Generating steady quantum coherence and magic through an autonomous. Phys. Rev. A 98, 012102 (2018)
Hu, M.L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels. Sci. China-Phys. Mech. Astron. 63, 230322 (2020)
Hu, M.L., Zhang, Y.H., Fan, H.: Nonlocal advantage of quantum coherence in a dephasing channel with memory. Chin. Phys. B 30, 030308 (2021)
Tan, K.C., Kwon, H., Park, C.Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016)
Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)
Zhang, J., Yang, S.R., Zhang, Y., Yu, C.S.: The classical correlation limits the ability of the measurement-induced average coherence. Sci. Rep. 7, 45598 (2017)
Mondal, D., Pramanik, T., Pati, A.K.: Nonlocal advantage of quantum coherence. Phys. Rev. A 95, 010301 (2017)
Hu, M.L., Fan, H.: Nonlocal advantage of quantum coherence in high-dimensional states. Phys. Rev. A 98, 022312 (2018)
Hu, M.L., Wang, X.M., Fan, H.: Hierarchy of the nonlocal advantage of quantum coherence and Bell nonlocality. Phys. Rev. A 98, 032317 (2018)
Datta, S., Majumdar, A.S.: Sharing of nonlocal advantage of quantum coherence by sequential observers. Phys. Rev. A 98, 042311 (2018)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Dakić, B., Vedral, V., Brukner, C̆.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)
Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)
Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)
Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)
Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance: the qubit case. J. Phys. A 47, 035302 (2014)
Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)
Chang, L., Luo, S.L.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)
Modi, K., Brodutch, A., Cable, H., Paterek, Z., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)
Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)
Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)
Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)
Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)
Hu, M.L., Lian, H.L.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D 55, 711 (2009)
Hu, M.L.: State transfer in dissipative and dephasing environments. Eur. Phys. J. D 59, 497 (2010)
Hu, M.L., Wang, H.F.: Protecting quantum Fisher information in correlated quantum channels. Ann. Phys. (Berlin) 532, 1900378 (2020)
Lagmago, G.K., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)
Hu, M.L., Tian, D.P.: Effects of impurity on the entanglement of the three-qubit Heisenberg XXX spin chain. Sci. China Ser. G 50, 208 (2007)
Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106 (2010)
Ciliberti, L., Rossignoli, R., Canosa, N.: Quantum discord in finite XY chains. Phys. Rev. A 82, 042316 (2010)
Altintas, F., Eryigit, R.: Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems. Ann. Phys. (N.Y.) 327, 3084 (2012)
Chen, W.X., Xie, Y.X., Xi, X.Q.: Measurement-induced nonlocality in the two-qubit Heisenberg XY model. Int. J. Mod. Phys. B 29, 1550098 (2015)
Xie, Y.X., Sun, Y.H., Li, Z.: Controlling measurement-induced nonlocality in the Heisenberg XX model by three-spin interactions. Int. J. Mod. Phys. B 32, 1750268 (2018)
Li, Z., Xie, Y.X.: Steady-state measurement-induced nonlocality in thermal reservoir. Laser Phys. Lett. 15, 065208 (2018)
Xie, Y.X., Gao, Y.Y.: Nonlocal advantage of quantum coherence in the Heisenberg XY model. Laser Phys. Lett. 16, 045202 (2019)
Xie, Y.X., Gao, Y.Y.: Impurity-assisted control of the nonlocal advantage of quantum coherence in the Heisenberg model. Laser Phys. Lett. 16, 075201 (2019)
Hu, M.L., Gao, Y.Y., Fan, H.: Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. A 101, 032305 (2020)
Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)
O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2002)
Wang, X.G., Zanardi, P.: Quantum entanglement and Bell inequalities in Heisenberg spin chains. Phys. Lett. A 301, 1 (2002)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Wang, X.G.: Entanglement versus energy in quantum spin models. Phys. Lett. A 334, 352 (2005)
Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 11675129).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xie, YX., Xu, XX. Nonlocal advantage of quantum coherence and quantum discord versus internal energy in the Heisenberg chain. Quantum Inf Process 20, 251 (2021). https://doi.org/10.1007/s11128-021-03190-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03190-1