Skip to main content
Log in

Efficient semi-quantum private comparison without using entanglement resource and pre-shared key

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Semi-quantum private comparison (SQPC) aims to compare the equality of the classical participants’ secrets with the help of a semi-honest TP, in which TP has full quantum capability while the classical participants’ quantum capability is limited. In the existing SQPC protocols, the entanglement resource (e.g., entangled state preparation and entangled state measurement) and pre-shared key are usually required. Besides, the qubit efficiency is relatively low. In this paper, we propose an efficient SQPC protocol based on single-particle states, in which the entanglement resource and pre-shared key are unnecessary. The qubit efficiency of our protocol is far greater than that of all existing SQPC protocols due to the use of single-particle states and circular transmission mode. Moreover, our protocol can be extended to the multi-party case, which can accomplish arbitrary pair’s comparison of equality among \(n(n\ge 2)\) classical participants. Finally, various kinds of attacks have been analyzed, which show that the proposed protocol is secure against the outside and inside attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C,H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, (1984), 175-179

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett 67(6), 661–663 (1991)

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell theorem. Phys. Rev. Lett 68, 557–559 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett 85, 5635 (2000)

    Article  ADS  Google Scholar 

  5. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  6. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A: Math. Theor 39(45), 14089–14099 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Wang, T.Y., Wen, Q.Y., Chen, X.B., et al.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Optics. Communications 281(24), 6130–6134 (2008)

    Article  ADS  Google Scholar 

  10. Yang, C.W., Tsai, C.W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process, 19(5) (2020)

  11. Deng, F.G., Long, G.L., Liu, X,S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A, 68:042317 (2003)

  12. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  13. Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with W state. Int. J. Quant. Inform 6(4), 899–906 (2008)

    Article  MATH  Google Scholar 

  14. Chang, Y., Xu, C.X., Zhang, S.B., et al.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull 59(21), 2541–2546 (2014)

    Article  Google Scholar 

  15. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett 100(23), 230502 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key- distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  17. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant 21, 6600111 (2015)

    Article  Google Scholar 

  18. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint- measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  19. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’82), Washington, DC, (1982), p.160

  20. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math and Theor 42(5), 055305 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  22. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process 13(1), 101–112 (2014)

    Article  ADS  MATH  Google Scholar 

  23. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process 12(2), 887–897 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process 13(2), 239–247 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  27. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process 12(2), 1077–1088 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun 284(12), 3160–3163 (2011)

    Article  ADS  Google Scholar 

  29. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys 53(7), 2167–2176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W states. Int. J. Theor. Phys 53(5), 1723–1729 (2014)

    Article  Google Scholar 

  31. Xu, G.A., Chen, X.B., Wei, Z.H., Li, M.J., Yang, Y.X.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quant. Inform 10(4), 1250045 (2012)

    Article  MathSciNet  Google Scholar 

  32. Li, C.Y., Chen, X.B., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process, 18(5) (2019)

  33. Ye, T.Y., Ji, Z.X.: Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China Phys. Mech. Astron. 60(9), 090312 (2017)

    Article  ADS  Google Scholar 

  34. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process 16(2), 36 (2017)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process 13(11), 2375–2389 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Ye, C.Q., Ye, T.Y.: Circular Multi-party quantum private comparison with-level single-particle states. Int. J. Theor. Phys 58(4), 1282–1294 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  38. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett 99(14), 140501 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quant. Inform 6(6), 1195–1202 (2008)

    Article  MATH  Google Scholar 

  41. Zou, X.F., Qiu, D.W., Li, L.Z., Wu, L.H., Li, L.J.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  42. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum key distribution with limited classical Bob. Int. J. Quant. Inform 11(1), 1350005 (2003)

    Article  MathSciNet  Google Scholar 

  43. Zou, X.F., Qiu, D.W., Zhang, S.Y., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process 14(8), 2981–2996 (2015)

  44. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process 13(11), 2417–2436 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process 15(5), 2067–2090 (2016)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Krawec, W.O.: Mediated semi-quantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  47. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China-Phys Mech. Astron 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  48. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process 15(2), 947–958 (2016)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Zhang, M.H., Li, H.F., Xia, Z.Q., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process 16(5), 117 (2017)

    Article  ADS  MATH  Google Scholar 

  50. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  51. Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf 10(5), 1250050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor 46(4), 045304 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Lin, J., Yang, C.W., Tsai, C.W., et al.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys 52(1), 156–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quant. Inform 11(5), 1350052 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  56. Li, Z., Li, Q., Liu, C., et al.: Limited resource semiquantum secret sharing. Quantum Inf. Process 17(10), 1–11 (2018)

    Article  ADS  MATH  Google Scholar 

  57. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. http://arxiv.org/pdf/quant-ph/160707961.pdf

  58. Thapliyala, K., Sharmab, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quant. Inform, (2016)

  59. Jiang, L.-Z.: Semi-Quantum Private Comparison Based on Bell States. Quantum Inf. Process 19(6), 180 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  60. Ye, T.Y., Ye, C.Q.: Measure-Resend Semi-Quantum Private Comparison Without Entanglement. Int. J. Theor. Phys 57(12), 3819–3834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18, 207 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  62. Yan, L.L., Zhang, S.B., Chang,Y., et al.: Semi-quantum private comparison protocol with three-particle G-like states. Quantum Inf. Process, 20(1), (2021)

  63. Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.-P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett 89(18), 187901 (2002)

    Article  ADS  Google Scholar 

  64. Diamanti, E., Lo, H.-K., Qi, B., Yuan, Z.: Practical challenges in quantum key distribution. Npj. Quantum. Inf 2, 16025 (2016)

    Article  Google Scholar 

  65. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  66. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  67. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  68. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett 98(1), 010503 (2007)

    Article  ADS  Google Scholar 

  69. Song, X.L., Liu, Y.B., Deng, H.Y., Xiao, Y.G.: (t, n) threshold d-level quantum secret sharing. Sci. Rep. 7(1), 6366 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1636106, 61671087 and 61962009), the Natural Science Foundation of Beijing Municipality (Grant No. 4182006), the BUPT Excellent Ph.D Students Foundation (Grant No. CX2021117) and the Fund of the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chongqiang, Y., Jian, L., Xiubo, C. et al. Efficient semi-quantum private comparison without using entanglement resource and pre-shared key. Quantum Inf Process 20, 262 (2021). https://doi.org/10.1007/s11128-021-03194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03194-x

Keywords

Navigation