Abstract
Coherence is an important quantum resource in quantum information theory and can be quantified by entropy. We propose a class of genuine coherence quantity which is defined via the difference of entropies between the state \(\varrho \) and the dephased state \(\Delta [\varrho ]\). One can employ Tsallis-\(\alpha \) entropy and Rényi-\(\alpha \) entropy for this genuine coherence quantity and regard it as the measurement-induced entropy increment, since it can be related to the optimal average work in quantum thermodynamics with thermodynamics project measurements. We prove that the quantity is genuine coherence monotone but not genuine coherence measure. Furthermore, we present an improved coherence quantity, which can be proved as a coherence measure.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1 (2007)
Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)
Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)
Gour, G., Müller, M.P., Narasimhachar, V., Spekkens, R.W., Halpern, Yunger, N. : The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015)
Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)
Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)
Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)
Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
Yadin, B., Vedral, V.: General framework for quantum macroscopicity in terms of coherence. Phys. Rev. A 93, 022122 (2016)
Marvian, I., Spekkens, R.W.: How to quantify coherence: distinguishing speakable and unspeakable notions. Phys. Rev. A 94, 052324 (2016)
de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A 50, 045301 (2017)
Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013)
Hu, M.-L., Hu, X., Wang, J., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1 (2018)
Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)
Qi, X.-F., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A: Math. Theor. 50, 285301 (2017)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)
Zhu, H.-J., Hayashi, M., Chen, L.: Axiomatic and operational connections between the \(l_{1}\)-norm of coherence and negativity. Phys. Rev. A 97, 022342 (2018)
Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence and asymmetry. Phys. Rev. A 93, 052331 (2016)
Du, S., Bai, Z., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91, 052120 (2015)
Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)
Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)
Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93, 032326 (2016)
Zhang, H.-J., Chen, B., Li, M., Fei, S.-M., Long, G.-L.: Estimation on geometric measure of quantum coherence. Commun. Theor. Phys. 67, 166–170 (2017)
Bu, K.-F., Singh, U., Fei, S.-M., Pati, A.K., Wu, J.-D.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)
Chen, B., Fei, S.-M.: Notes on modified trace distance measure of coherence. Quantum Inf. Process. 17, 107 (2018)
Xu, J.-W., Shao, L.-H., Fei, S.-M.: Coherence measures with respect to general quantum measurements. Phys. Rev. A 102, 012411 (2020)
Zhao, M.-J., Ma, T., Wang, Z., Fei, S.-M., Pereira, R.: Coherence concurrence for X states. Quantum Inf. Process. 19, 104 (2020)
Li, L., Wang, Q.-W., Shen, S.-Q., Li, M.: Quantum coherence measures based on Fisher information with applications. Phys. Rev. A 103, 012401 (2021)
Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)
Borland, L., Plastino, A.R., Tsallis, C.: Information gain within nonextensive thermostatistics. J. Math. Phys. 39, 6490 (1998)
Furuichi, S., Yanagi, K., Kuriyama, K.: Fundamental properties of Tsallis relative entropy. J. Math. Phys. 45, 4868 (2004)
Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)
Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331, 593–622 (2014)
Hayashi, M.: Quantum Information Theory. (Graduate Texts in Physics), Springer, Berlin (2017)
Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93, 032136 (2016)
Vershynina, A.: Quantum coherence, discord and correlation measures based on Tsallis relative entropy. Quantum Inf. Comput. 20, 553–569 (2020)
Kollas, N.K.: Optimization-free measures of quantum resources. Phys. Rev. A 97, 062344 (2018)
Guo, M., Jin, Z., Li, B., Hu, B., Fei, S.-M.: Quantifying quantum coherence based on the Tsallis relative operator entropy. Quantum Inf. Process. 19, 382 (2020)
Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94, 052336 (2016)
Shao, L.-H., Li, Y., Luo, Y., Xi, Z.: Quantum coherence quantifiers based on the Rényi \(\alpha \)-relative entropy. Commun. Theor. Phys. 67, 631–6 (2017)
Zhu, H.-J., Hayashi, M., Chen, L.: Coherence and entanglement measures based on Rényi relative entropies. J. Phys. A: Math. Theor. 50, 475303 (2017)
Kammerlander, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174 (2016)
Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen die Determinanten-Theorie Sitzungsber. Berlin. Math. Gesellschaft 22, 9–20 (1923). [Issai Schur Collected Works (A. Brauer and H. Rohrbach, eds.), Vol. II. 416–427. Springer-Verlag, Berlin, (1973)]
Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics, Springer, Berlin (2010)
Hiai, F., Mosonyi, M., Petz, D., Bény, C.: Quantum f-divergences and error correction. Rev. Math. Phys. 23, 691 (2011)
Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)
Yu, X.-D., Zhang, D.-J., Xu, G.-F., Tong, D.-M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)
Mosonyi, M., Hiai, F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 57, 2474 (2011)
Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)
Acknowledgements
We thank S. Camalet, Ming-Liang Hu, Xueyuan Hu for helpful discussions. This work is supported by the National Natural Science Foundation of China (Grants No. 11734015 and No. 61674110), and K.C. Wong Magna Fund in Ningbo University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dai, Y., Hu, J., Zhang, Z. et al. Measurement-induced entropy increment for quantifying genuine coherence. Quantum Inf Process 20, 261 (2021). https://doi.org/10.1007/s11128-021-03199-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03199-6