Skip to main content

Advertisement

Log in

Automatic design of quantum circuits

Generation of quantum teleportation protocols

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum computing is a field of study aimed at developing technologies based on the principles of quantum theory. In this research area, enormous theoretical progress has been made, but at the current state, few quantum algorithms have been developed. It is very hard to efficiently construct new ones. The complexity is due to the non-intuitive nature of quantum operations. To overcome this obstacle, we opt for the integration of an automatic design approach. In this paper, we propose an adapted version of BackTracking algorithm allowing complete but optimal exploration of the quantum circuits space. For a given problem, the test of possible quantum gate sequences is optimized by using a constraint making it possible to ignore all unnecessary calculation in an efficient manner. In addition, solutions are generated automatically without resorting to mathematical formulas. Our approach allowed us to generate two new versions of controlled quantum teleportation. In the first version, the controller can switch the teleported Qubit between two possible distant receivers, while in the second version, this controller can choose between two different transmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  2. Deutsch, D.: Quantum theory, the church-turing thesis, and the universal quantum computer. Proc. Royal Soc. Lond. Ser. A 400, 97 (1985)

  3. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (1994)

  4. Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum computing. PLoS ONE 13(12) (2018)

  5. Quantiki: Quantiki: List of QC Simulators (2018)

  6. Bekelman, J.E., Li, Y., Gross, C.P.: The Q\(\sharp \) programming language. JAMA 289(19), 454–65 (2003)

    Article  Google Scholar 

  7. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018)

    Article  Google Scholar 

  8. Alexander, T., Kanazawa, N., Egger, D., Capelluto, L., Wood, C., Javadi-Abhari, A., McKay, M.: Qiskit pulse: programming quantum computers through the cloud with pulses. Quantum Sci. Technol. 5(4) (2020)

  9. Jones, T., Brown, A., Bush, I., Benjamin, S.: QuEST and high performance simulation of quantum computers. Sci. Rep. 9, 10736 (2019)

    Article  ADS  Google Scholar 

  10. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234–1240 (2013)

    Article  ADS  Google Scholar 

  11. Gheorghiu, V.: Quantum++: a modern C++ quantum computing library. PLoS ONE 13(12), 1–27 (2018)

    Article  Google Scholar 

  12. Bennett, C.H., Brassard, G., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  13. Karlsson, A., Bournnane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893–897 (2005)

    Article  Google Scholar 

  15. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Sun, Y.R., Xiang, N., Dou, Z., Xu, G., Chen, X.B., Yang, Y.X.: A universal protocol for controlled bidirectional quantum state transmission. Quantum Inf. Process. 18(281) (2019)

  17. Aliloute, S., Allati, A. El., Aouadi, I. El.: Bidirectional teleportation using coherent states. Quantum Inf. Process. 20(29) (2021)

  18. Chen, Y.X., Du, J., Liu, S.X., Wang, X.H.: Cyclic quantum teleportation. Quantum Inf. Process. 16, 201–210 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Sun, S., Zhang, H.: Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state. Quantum Inf. Process. 19(120) (2020)

  20. Massey, P., Clark, J.A., Stepney, S.: Evolving quantum circuits and programs through genetic programming. In: Lecture Notes in Computer Science Book Series, GECCO 2004, pp. 569–580 (2004)

  21. Bautu, A., Bautu, E.: Quantum circuit design by means of genetic programming. Romanian J. Phys. 52, 697–704 (2007)

    MATH  Google Scholar 

  22. Satsangi, S., Gulati, A., Kalra, P.K., Patvardhan, C.: Application of genetic algorithms for evolution of quantum equivalents of Boolean circuits. Int. J. Electr. Comput. Electron. Commun. Eng. 6(3), 275–279 (2012)

    Google Scholar 

  23. Abubakar, M.Y., Jung, L.T., Zakaria, N., Younes, A., Abdel-Aty, A.H.: Reversible circuit synthesis by genetic programming using dynamic gate libraries. Quantum Inf. Process. 16(160) (2017)

  24. Rasconi, R., Oddi, A.: An innovative genetic algorithm for the quantum circuit compilation problem. In: AAAI Conference on Artificial Intelligence, pp. 7707–7714 (2019)

  25. Krawec, W., Picek, S., Jakobovic, D.: Evolutionary algorithms for the design of quantum protocols. In: International Conference on the Applications of Evolutionary Computation, EvoApplications 2019, pp. 220–236 (2019)

  26. Yabuki, T., Iba, H.: Genetic algorithms for quantum circuit design evolving a simpler teleportation circuit. In: GECCO (2000)

  27. Bitner, J.R., Reingold, E.M.: Backtrack programming techniques. Commun. ACM 18, 651–656 (1975)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for the detailed comments and suggestions. Their recommendations have widely contributed to the enrichment of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Khalfaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalfaoui, K., Boudjedaa, T. & Kerkouche, E.H. Automatic design of quantum circuits. Quantum Inf Process 20, 283 (2021). https://doi.org/10.1007/s11128-021-03208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03208-8

Keywords