Abstract
Quantum dialogue (QD) is a quantum communication mode which enables two communication parties to exchange their secret messages simultaneously. In this paper, we propose a measurement-device-independent quantum dialogue (MDI-QD) protocol using the polarization–spatial-mode hyperentanglement. The protocol can eliminate the security loopholes related to measurement devices and the information leakage. Comparing with previous MDI-QD protocol, our MDI-QD protocol has higher channel capacity. Two communication parties can exchange 4 bits of messages per hyperentangled photon pair. Moreover, for promoting its practical application, we try to use the practical linear-optical partial hyperentangled Bell-state measurement in our MDI-QD protocol, with which the parties can exchange 3 bits of messages per hyperentangled photon pair. Our high-capacity MDI-QD protocol has application potential in future quantum communication field.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chang, C.R., Lin, Y.C., Chiu, K.L., Huang, T.W.: The second quantum revolution with quantum computers. AAPPS Bull. 30, 9–22 (2020)
Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Communication System and Signal Processing. 175–179 (1984)
Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686 (2010)
Ma, X.F., Zeng, P., Zhou, H.Y.: Phase-Matching quantum key distribution. Phys. Rev. X 8, 031043 (2018)
Ma, J.J., Zhou, Y., Yuan, X., Ma, X.F.: Operational interpretation of coherence in quantum key distribution. Phys. Rev. A 99, 062325 (2019)
Xu, F.H., Ma, X.F., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)
Fang, X.T., Zeng, P., Liu, H., Zou, M., Wu, W.J., Tang, Y.L., Sheng, Y.J., Xiang, Y., Zhang, W.J., Li, H., Wang, Z., You, L.X., Li, M.J., Chen, H., Chen, Y.A., Zhang, Q., Peng, C.Z., Ma, X.F., Chen, T.Y., Pan, J.W.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photon. 14, 422 (2020)
Hu, J.K., Liao, Q., Mao, Y., Guo, Y.: Performance improvement of unidimensional continuous-variable quantum key distribution using zero-photon quantum catalysis. Quan. Inform. Process. 20, 31 (2021)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)
Hu, X.M., Zhang, C., Zhang, C.J., Liu, B.H., Huang, Y.F., Han, Y.J., Li, C.F., Guo, G.C.: Experimental certification for nonclassical teleportation. Quan. Engin. 1, e3 (2019)
Yang, L., Liu, Y.C., Li, Y.S.: Quantum teleportation of particles in an environment. Chin. Phys. B 29, 060301 (2020)
Yan, Z.H., Qin, J.L., Qin, Z.Z., Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Generation of non-classical states of light and their application in deterministic quantum teleportation. Funda. Res. 1, 43 (2021)
Long, G.L., Liu, X.S.: Theoretical efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 043217 (2003)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)
Wang, C., Deng, F.G., Li, Y.S.: Quantum secure direct communication with high-dimension quantum hyperdense coding. Phys. Rev. A 71, 044305 (2005)
Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)
Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)
Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahran, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China-Phys. Mech. Astron. 60, 120313 (2017)
Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China-Phys. Mech. Astron. 61, 090312 (2018)
Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyners wiretap channel theory. Quan. Engineer. 1, e26 (2019)
Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)
Li, T., Long, G.L.: Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys 22, 063017 (2020)
Li, T., Gao, Z.K., Li, Z.H.: Measurement-device-independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator. EPL 131, 60001 (2020)
Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)
Pan, D., Lin, Z.S., Wu, J.W., Zhang, H.R., Sun, Z., Ruan, D., Yin, L.G., Long, G.L.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8, 1522–1531 (2020)
Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267–1269 (2020)
Wang, C.: Quantum secure direct communication: Intersection of communication and cryptography. Funda. Res. 1, 91–92 (2021)
Ye, Z.D., Pan, D., Sun, Z., Du, C.G., Yin, L.G., Long, G.L.: Generic security analysis framework for quantum secure direct communication. Fron. Phys. 16, 21503 (2021)
Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)
Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22, 22–24 (2005)
Xia, Y., Fu, C.B., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Quantum dialogue by using the GHZ state. J. Korean Phys. Soci. 48, 24–27 (2006)
Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China-Phys. Mech. Astron. 50, 558–562 (2007)
Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283, 2288–2293 (2010)
Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China-Phys. Mech. Astron. 57, 1238–1243 (2014)
Shi, G.F., Xi, X.Q., Hu, M.L.: Quantum dialogue by using single photons. Opt. Commun. 283, 1984–1986 (2010)
Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quan. Inform. Process. 16, 4 (2017)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Tamaki, K., Lo, H.K.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)
Xu, F.H., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15, 113007 (2013)
Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)
Tang, Y.L., Yin, H.L., Chen, S.J., Liu, Y., Zhang, W.J., Jiang, X., Zhang, L., Wang, J., You, L.X., Guan, J.Y., Yang, D.X., Wang, Z., Liang, H., Zhang, Z., Zhou, N., Ma, X.F., Chen, T.Y., Zhang, Q., Pan, J.W.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014)
Wang, C., Song, X.T., Yin, Z.Q., Wang, S., Chen, W., Zhang, C.M., Guo, G.C., Han, Z.F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)
Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J., Mao, Y.Q., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)
Ranu, S.K., Prabhakar, A., Mandayam, P.: Differential phase encoded measurement-device-independent quantum key distribution. Quan. Inform. Process. 20, 67 (2021)
Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G., Long, G.L.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345–1350 (2018)
Gao, Z.K., Li, T., Li, Z.H.: Deterministic measurement-device-independent quantum secret sharing. Sci. China-Phys. Mech. Astron. 63, 120311 (2020)
Niu, P.H., Wu, J.W., Yin, L.G., Long, G.L.: Security analysis of measurement-device-independent quantum secure direct communication. Quan. Inform. Process. 19, 356 (2020)
Liu, L., Niu, J.L., Fan, C.R., Feng, X.T., Wang, C.: High-dimensional measurement-device-independent quantum secure direct communication. Quan. Inform. Process. 19, 404 (2020)
Maitra, A.: Measurement device-independent quantum dialogue. Quan. Inform. Process. 16, 305 (2017)
Das, N., Paul, G.: Two efficient measurement device independent quantum dialogue protocols. International J. Quan. Inform. 18, 2050038 (2020)
Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)
Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)
Hu, X.M., Huang, C.X., Sheng, Y.B., Zhou, L., Liu, B.H., Guo, Y., Zhang, C., Xing, W.B., Huang, Y.F., Li, C.F., Guo, G.C.: Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021)
Zhou, L. and Sheng, Y.B.: High-efficient two-step entanglement purification using hyperentanglement. arXiv:2101.09006v2 (2021)
Cui, Z.X., Zhong, W., Zhou, L., Sheng, Y.B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China-Phys. Mech. Astron. 62, 110311 (2019)
Yan, Y.F., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys. 16, 11501 (2020)
Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: High-capacitymeasurement-device-independent quantum secure direct communication. Quan. Inform. Process. 19, 354 (2020)
Zou, Z.K., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon. EPL 131, 40005 (2020)
Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyper-entangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)
Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)
Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)
Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444–28458 (2016)
Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 91, 062321 (2015)
Wang, T.J., Wang, C.: Nonlocal hyperconcentration on entangled photons using photonic module system. Sci. Rep. 6, 19497 (2016)
Su, S.L., Shen, H.Z., Liang, E., Zhang, S.: One-step construction of the multiple-qubit Rydberg controlled-phase gate. Phys. Rev. A 98, 032306 (2018)
Su, S.L., Guo, F.Q., Tian, L., Zhu, X.Y., Yan, L.L., Liang, E.J., Feng, M.: Nondestructive Rydberg parity meter and its applications. Phys. Rev. A 101, 012347 (2020)
Gao, C.Y., Ren, B.C., Zhang, Y.X.: Universal linear-optical hyper-entangled Bell-state measurement. Appl. Phys. Express. 13, 027004 (2020)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos. 11974189 and 12175106.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Han, KQ., Zhou, L., Zhong, W. et al. Measurement-device-independent quantum dialogue based on hyperentanglement. Quantum Inf Process 20, 280 (2021). https://doi.org/10.1007/s11128-021-03213-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03213-x