Skip to main content

Advertisement

Log in

Measurement-device-independent quantum dialogue based on hyperentanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum dialogue (QD) is a quantum communication mode which enables two communication parties to exchange their secret messages simultaneously. In this paper, we propose a measurement-device-independent quantum dialogue (MDI-QD) protocol using the polarization–spatial-mode hyperentanglement. The protocol can eliminate the security loopholes related to measurement devices and the information leakage. Comparing with previous MDI-QD protocol, our MDI-QD protocol has higher channel capacity. Two communication parties can exchange 4 bits of messages per hyperentangled photon pair. Moreover, for promoting its practical application, we try to use the practical linear-optical partial hyperentangled Bell-state measurement in our MDI-QD protocol, with which the parties can exchange 3 bits of messages per hyperentangled photon pair. Our high-capacity MDI-QD protocol has application potential in future quantum communication field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chang, C.R., Lin, Y.C., Chiu, K.L., Huang, T.W.: The second quantum revolution with quantum computers. AAPPS Bull. 30, 9–22 (2020)

    Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Communication System and Signal Processing. 175–179 (1984)

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  5. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686 (2010)

    Article  ADS  Google Scholar 

  6. Ma, X.F., Zeng, P., Zhou, H.Y.: Phase-Matching quantum key distribution. Phys. Rev. X 8, 031043 (2018)

    Google Scholar 

  7. Ma, J.J., Zhou, Y., Yuan, X., Ma, X.F.: Operational interpretation of coherence in quantum key distribution. Phys. Rev. A 99, 062325 (2019)

    Article  ADS  Google Scholar 

  8. Xu, F.H., Ma, X.F., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fang, X.T., Zeng, P., Liu, H., Zou, M., Wu, W.J., Tang, Y.L., Sheng, Y.J., Xiang, Y., Zhang, W.J., Li, H., Wang, Z., You, L.X., Li, M.J., Chen, H., Chen, Y.A., Zhang, Q., Peng, C.Z., Ma, X.F., Chen, T.Y., Pan, J.W.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photon. 14, 422 (2020)

    Article  ADS  Google Scholar 

  10. Hu, J.K., Liao, Q., Mao, Y., Guo, Y.: Performance improvement of unidimensional continuous-variable quantum key distribution using zero-photon quantum catalysis. Quan. Inform. Process. 20, 31 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  13. Hu, X.M., Zhang, C., Zhang, C.J., Liu, B.H., Huang, Y.F., Han, Y.J., Li, C.F., Guo, G.C.: Experimental certification for nonclassical teleportation. Quan. Engin. 1, e3 (2019)

    Google Scholar 

  14. Yang, L., Liu, Y.C., Li, Y.S.: Quantum teleportation of particles in an environment. Chin. Phys. B 29, 060301 (2020)

    Article  ADS  Google Scholar 

  15. Yan, Z.H., Qin, J.L., Qin, Z.Z., Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Generation of non-classical states of light and their application in deterministic quantum teleportation. Funda. Res. 1, 43 (2021)

    Article  Google Scholar 

  16. Long, G.L., Liu, X.S.: Theoretical efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  17. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 043217 (2003)

    Google Scholar 

  18. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  19. Wang, C., Deng, F.G., Li, Y.S.: Quantum secure direct communication with high-dimension quantum hyperdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  20. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  21. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  22. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)

    Article  Google Scholar 

  23. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahran, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China-Phys. Mech. Astron. 60, 120313 (2017)

    Article  ADS  Google Scholar 

  24. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China-Phys. Mech. Astron. 61, 090312 (2018)

    Article  Google Scholar 

  25. Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyners wiretap channel theory. Quan. Engineer. 1, e26 (2019)

    Google Scholar 

  26. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Article  Google Scholar 

  27. Li, T., Long, G.L.: Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys 22, 063017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Li, T., Gao, Z.K., Li, Z.H.: Measurement-device-independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator. EPL 131, 60001 (2020)

    Article  ADS  Google Scholar 

  29. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    Article  ADS  Google Scholar 

  30. Pan, D., Lin, Z.S., Wu, J.W., Zhang, H.R., Sun, Z., Ruan, D., Yin, L.G., Long, G.L.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8, 1522–1531 (2020)

    Article  Google Scholar 

  31. Long, G.L., Zhang, H.R.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66, 1267–1269 (2020)

    Article  Google Scholar 

  32. Wang, C.: Quantum secure direct communication: Intersection of communication and cryptography. Funda. Res. 1, 91–92 (2021)

    Article  Google Scholar 

  33. Ye, Z.D., Pan, D., Sun, Z., Du, C.G., Yin, L.G., Long, G.L.: Generic security analysis framework for quantum secure direct communication. Fron. Phys. 16, 21503 (2021)

    Article  ADS  Google Scholar 

  34. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22, 22–24 (2005)

    Article  ADS  Google Scholar 

  36. Xia, Y., Fu, C.B., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Quantum dialogue by using the GHZ state. J. Korean Phys. Soci. 48, 24–27 (2006)

    Google Scholar 

  37. Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China-Phys. Mech. Astron. 50, 558–562 (2007)

    Article  ADS  Google Scholar 

  38. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283, 2288–2293 (2010)

    Article  ADS  Google Scholar 

  39. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China-Phys. Mech. Astron. 57, 1238–1243 (2014)

    Article  ADS  Google Scholar 

  40. Shi, G.F., Xi, X.Q., Hu, M.L.: Quantum dialogue by using single photons. Opt. Commun. 283, 1984–1986 (2010)

    Article  ADS  Google Scholar 

  41. Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quan. Inform. Process. 16, 4 (2017)

    Article  ADS  MATH  Google Scholar 

  42. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  43. Tamaki, K., Lo, H.K.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)

    Article  ADS  Google Scholar 

  44. Xu, F.H., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15, 113007 (2013)

    Article  ADS  MATH  Google Scholar 

  45. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)

    Article  ADS  Google Scholar 

  46. Tang, Y.L., Yin, H.L., Chen, S.J., Liu, Y., Zhang, W.J., Jiang, X., Zhang, L., Wang, J., You, L.X., Guan, J.Y., Yang, D.X., Wang, Z., Liang, H., Zhang, Z., Zhou, N., Ma, X.F., Chen, T.Y., Zhang, Q., Pan, J.W.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014)

    Article  ADS  Google Scholar 

  47. Wang, C., Song, X.T., Yin, Z.Q., Wang, S., Chen, W., Zhang, C.M., Guo, G.C., Han, Z.F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)

    Article  ADS  Google Scholar 

  48. Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J., Mao, Y.Q., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    Article  ADS  Google Scholar 

  49. Ranu, S.K., Prabhakar, A., Mandayam, P.: Differential phase encoded measurement-device-independent quantum key distribution. Quan. Inform. Process. 20, 67 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  50. Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G., Long, G.L.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63, 1345–1350 (2018)

    Article  Google Scholar 

  51. Gao, Z.K., Li, T., Li, Z.H.: Deterministic measurement-device-independent quantum secret sharing. Sci. China-Phys. Mech. Astron. 63, 120311 (2020)

    Article  ADS  Google Scholar 

  52. Niu, P.H., Wu, J.W., Yin, L.G., Long, G.L.: Security analysis of measurement-device-independent quantum secure direct communication. Quan. Inform. Process. 19, 356 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  53. Liu, L., Niu, J.L., Fan, C.R., Feng, X.T., Wang, C.: High-dimensional measurement-device-independent quantum secure direct communication. Quan. Inform. Process. 19, 404 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  54. Maitra, A.: Measurement device-independent quantum dialogue. Quan. Inform. Process. 16, 305 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Das, N., Paul, G.: Two efficient measurement device independent quantum dialogue protocols. International J. Quan. Inform. 18, 2050038 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  57. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  58. Hu, X.M., Huang, C.X., Sheng, Y.B., Zhou, L., Liu, B.H., Guo, Y., Zhang, C., Xing, W.B., Huang, Y.F., Li, C.F., Guo, G.C.: Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021)

    Article  ADS  Google Scholar 

  59. Zhou, L. and Sheng, Y.B.: High-efficient two-step entanglement purification using hyperentanglement. arXiv:2101.09006v2 (2021)

  60. Cui, Z.X., Zhong, W., Zhou, L., Sheng, Y.B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China-Phys. Mech. Astron. 62, 110311 (2019)

    Article  ADS  Google Scholar 

  61. Yan, Y.F., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys. 16, 11501 (2020)

    Article  ADS  Google Scholar 

  62. Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: High-capacitymeasurement-device-independent quantum secure direct communication. Quan. Inform. Process. 19, 354 (2020)

    Article  ADS  Google Scholar 

  63. Zou, Z.K., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon. EPL 131, 40005 (2020)

    Article  ADS  Google Scholar 

  64. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyper-entangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  65. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)

    Article  ADS  Google Scholar 

  66. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    Article  ADS  Google Scholar 

  67. Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444–28458 (2016)

    Article  ADS  Google Scholar 

  68. Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 91, 062321 (2015)

    Article  ADS  Google Scholar 

  69. Wang, T.J., Wang, C.: Nonlocal hyperconcentration on entangled photons using photonic module system. Sci. Rep. 6, 19497 (2016)

    Article  ADS  MATH  Google Scholar 

  70. Su, S.L., Shen, H.Z., Liang, E., Zhang, S.: One-step construction of the multiple-qubit Rydberg controlled-phase gate. Phys. Rev. A 98, 032306 (2018)

    Article  ADS  Google Scholar 

  71. Su, S.L., Guo, F.Q., Tian, L., Zhu, X.Y., Yan, L.L., Liang, E.J., Feng, M.: Nondestructive Rydberg parity meter and its applications. Phys. Rev. A 101, 012347 (2020)

    Article  ADS  Google Scholar 

  72. Gao, C.Y., Ren, B.C., Zhang, Y.X.: Universal linear-optical hyper-entangled Bell-state measurement. Appl. Phys. Express. 13, 027004 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11974189 and 12175106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, KQ., Zhou, L., Zhong, W. et al. Measurement-device-independent quantum dialogue based on hyperentanglement. Quantum Inf Process 20, 280 (2021). https://doi.org/10.1007/s11128-021-03213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03213-x

Keywords