Skip to main content
Log in

Study of decoherence and memory in modified Eisert–Wilkens–Lewenstein scheme

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Eisert–Wilkens–Lewenstein scheme is the well-known quantization scheme that exploits only controlled unitary operators due to the requirement of having a classical game as a subset of the quantum version. By revoking this requirement, the modified Eisert–Wilkens–Lewenstein scheme is proposed to admit the other two-qubit entangling operators. In the present work, we introduce the notions of decoherence and memory in the modified Eisert–Wilkens–Lewenstein scheme. While decoherence is known to decrease the payoffs of the players, memory increases it. Further, the present work reveals the availability of suitable entangling operators, which can increase (decrease) the effect of memory (decoherence) on the average payoff of the players under the given game setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press (1992)

  2. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press (1947)

  3. Guo, H., Zhang, J., Koehler, G.J.: A survey of quantum games. Decis. Support Syst. 46(1), 318–332 (2008)

    Article  Google Scholar 

  4. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64, 030301(R) (2001)

    Article  ADS  Google Scholar 

  7. Du, J., Xu, X., Li, H., Zhou, X., Han, R.: Entanglement playing a dominating role in quantum games. Phys. Letts. A. 289, 9–15 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. Elgazzar, A.S.: Quantum prisoner’s dilemma in a restricted one parametric strategic space. Appl. Math. Comput. 370, 124927 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Elgazzar, A.S.: Coopetition in quantum prisoner’s dilemma and COVID-19. Quant. Info. Process. 20, 102 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. Flitney, A.P., Abbott, D.: Advantage of a quantum player over a classical one in 2 × 2 quantum games. Proc. R. Soc. Lond. A 459, 2463–2474 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Schmid, C., Flitney, A.P., Wieczorek, W., Kiesel, N., Weinfurter, H., Hollenberg, L.C.L.: Experimental implementation of four player quantum game. New J. Phys. 12, 063031 (2010)

    Article  ADS  Google Scholar 

  12. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Li, Q., Iqbal, A., Perc, M., Chen, M., Abbott, D.: Coevolution of quantum and classical strategies on evolving random networks. PLoS ONE 8(7), e68423 (2013)

    Article  ADS  Google Scholar 

  14. Sankrith, S., Dave, B., Balakrishnan, S.: Significance of entangling operators in quantum two penny flip game. Braz. J. Phys. 49(6), 859–863 (2019)

    Article  ADS  Google Scholar 

  15. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543–2556 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chen, L.K., Ang, H., Kiang, D., Kwek, L.C., Lo, C.F.: Quantum prisoner dilemma under decoherence. Phys. Letts. A 316, 317–323 (2003)

    Article  ADS  Google Scholar 

  17. Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A: Math. Gen. 38, 449 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Khan, S., Ramzan, M., Khan, M.K.: Quantum Parrondo’s game under decoherence. Int. J Theor. Phys 49, 31 (2010)

    Article  MathSciNet  Google Scholar 

  19. Flitney, A.P., Hollenberg, L.C.L.: Multiplayer quantum minority game with decoherence. Quant. Inf. Comput. 7(1–2), 111–127 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Nawaz, A.: The generalized quantization schemes for games and its application to quantum information, Ph.D. thesis, Quaid-I-Azam University, Islamabad, Pakistan (2007). http://arxiv.org/abs/quant-ph/1012.1933

  21. Ramzan, M., Nawaz, A., Toor, A.H., Khan, M.K.: The effect of quantum memory on quantum games. J. Phys. A. Math. Theor. 41(5), 055307 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Nawaz, A., Toor, A.H.: Quantum games with correlated noise. J. Phys. A: Math. Gen 39, 9321 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    Article  ADS  Google Scholar 

  24. Vijayakrishnan, V., Balakrishnan, S.: Role of two-qubit entangling operators in the modified Eisert–Wilkens–Lewenstein approach of quantization. Quant. Info. Process. 18, 112 (2019)

    Article  ADS  Google Scholar 

  25. Khan, F.S., Solmeyer, N., Balu, R., et al.: Quantum games: a review of the history, current state, and interpretation. Quant. Info. Process. 17, 309 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zhang, J., Vala, J., Whaley, K.B., Sastry, S.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. Rezakhani, A.T.: Characterization of two-qubit perfect entanglers. Phys. Rev. A 70, 052313 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the reviewers for their valuable comments and suggestions which improved the paper to the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balakrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameshwari, A.V.S., Balakrishnan, S. Study of decoherence and memory in modified Eisert–Wilkens–Lewenstein scheme. Quantum Inf Process 20, 282 (2021). https://doi.org/10.1007/s11128-021-03216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03216-8

Keywords

Navigation