Abstract
Ground-state cooling of multiple mechanical resonators is an important goal in the study of quantum optomechanics. Here, we propose a dynamic dissipative synchronous cooling method for the simultaneous cooling of the two mechanical resonators in the strong optomechanical coupling regime. The synchronized modulation of the cavity dissipation can significantly accelerate the cooling process, with both of the resonators reaching the ground state. We derive the analytical cooling limits, which agree with the numerical simulations. The present scheme opens a new prospect for the research of multiple-mode ground-state cooling of mechanical resonators.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Meystre, P., et al.: A short walk through quantum optomechanics. Physics (Berlin) 525, 215 (2013)
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Phys. Rev. Mod. 86, 1391 (2014)
Abbott, B., et al.: LIGO: the laser interferometer gravitational-wave observatory. New J. Phys. 11, 073032 (2009)
Eerkens, H.J., Buters, F.M., Weaver, M.J., Pepper, B., Welker, G., Heeck, K., Sonin, P., Man, S.D., Bouwmeester, D.: Optical side-band cooling of a low frequency optomechanical system. Opt. Exp. 23, 8014 (2015)
Khan, R., Massel, F., Heikkila, T.T.: Cross-Kerr nonlinearity in optomechanical systems Phys. Rev. A 91, 043822 (2015)
Bagci, T., et al.: Optical detection of radio waves through a nanomechanical transducer. Nature (London) 507, 81 (2014)
Wieczorek, W., Hofer, S.G., Obermaier, J.H., Riedinger, R., Hammerer, K., Aspelmeye, M.: Optimal state estimation for cavity optomechanical systems. Phys. Rev. Lett. 114, 223601 (2015)
Ullah, M., Abbas, A., Jing, J., Wang, L.G.: Flexible manipulation of the Goos-Hänchen shift in a cavity optomechanical system. Phys. Rev. A 100, 063833 (2019)
Wei, X., Sheng, J.T., Yang, C., Wu, Y.L., Wu, H.B.: Controllable two-membrane-in-the-middle cavity optomechanical system.. Phys. Rev. A 99, 023851 (2019)
Machado, J.D.P., Blanter, Y.M.: Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime. Phys. Rev. A 94, 063835 (2016)
Bagheri, M., Poot, M., Fan, L., Marquardt, F., Tang, H.X.: Photonic cavity synchronization of nanomechanical oscillator. Phys. Rev. Lett. 111, 213902 (2013)
Xu, X.W., Li, Y., Li, B., Jing, H., Chen, A.X.: Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. Phys. Rev. Applied. 13, 044070 (2020)
Karabalin, R.B., Cross, M.C., Roukes, M.L.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79, 165309 (2009)
Joseph, R.P., Atabek, O., Sukharev, M., Charron, E.: Theoretical analysis of dipole-induced electromagnetic transparency. Phys. Rev. A 91, 043835 (2015)
Joseph, R.P., Sukharev, M., Atabek, O., Charron, E.: Dipole-induced electromagnetic transparency. Phys. Rev. Lett. 113, 163603 (2014)
Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 6010 (2010)
Safavi-Naeini, A.H., Alegre, T., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 7341 (2011)
Zyczkowski, K., Horodecki, P., Horodecki, M., Horodecki, R.: Dynamics of quantum entanglement. Phys. Rev. A 65, 012101 (2001)
Cohen, J.D., Meenehan, S.M., Maccabe, G.S., Gröblacher, S., Safavi-Naeini, A.H., Marsili, F., Shaw, M.D., Painter, O.: Phonon counting and intensity interferometry of a nanomechanical resonator. Nature (London) 520, 7548 (2014)
Riedinger, R., Hong, S., Norte, R.A., Slater, J.A., Shang, J., Krause, A.G., Anant, V., Aspelmeyer, M., Gröblacher, S.: Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature (London) 530, 7590 (2016)
Ockeloen-Korppi, C.F., Damskägg, E., Pirkkalainen, J.-M., Asjad, M., Clerk, A.A., Massel, F., Woolley, M.J., Sillanpää, M.A.: Stabilized entanglement of massive mechanical oscillators. Nature (London) 556, 7702 (2018)
Lü, X.Y., Liao, J.Q., Tian, L., Nori, F.: Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Phys. Rev. A 91, 013834 (2015)
Zhou, L., Cheng, J., Han, Y., Zhang, W.P.: Nonlinearity enhancement in optomechanical systems. Phys. Rev. A 88, 063854 (2013)
Khan, R., Massel, F., Heikkilä, T.T.: Cross-Kerr nonlinearity in optomechanical systems. Phys. Rev. A 91, 043822 (2015)
Dey, S., Bhat, A., Momeni, D., Faizal, M., Ali, A.F., Dey, T.K., Rehman, A.: Probing noncommutative theories with quantum optical experiments. Nucl. Phys. B 924, 578 (2017)
Khodadi, M., Nozari, K., Dey, S., Bhat, A., Faizal, M.: A new bound on polymer quantization via an opto-mechanical setup. Sci. Rep. 8, 1659 (2018)
Singh, R., Purdy, T.P.: High-Q nanomechanical resonators for optomechanical sensing beyond the standard quantum limit. CLEO_SI. 10, 1364 (2020)
Sainadh, U.S., Kumar, M.A.: Displacement sensing beyond the standard quantum limit with intensity-dependent optomechanical coupling. Phys. Rev. A 102, 063523 (2020)
Park, C.Y., Kang, M., Lee, C.W., Bang, J., Lee, S.W., Jeong, H.: Quantum macroscopicity measure for arbitrary spin systems and its application to quantum phase transitions. Phys. Rev. A 94, 052105 (2016)
Martin, I., Shnirman, A., Tian, L., Zoller, P.: Ground-state cooling of mechanical resonators. Phys. Rev. B 69, 125339 (2004)
Liu, Y.L., Liu, Y.X.: Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity Phys. Rev. A 96, 023812 (2017)
Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G., Kippenberg, T.J.: Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature (London) 10, 1038 (2009)
Peterson, R.W., Purdy, T.P., Kampel, N.S., Andrews, R.W., Yu, P.L., Lehnert, K.W., Regal, C.A.: Laser cooling of a micromechanical membrane to the quantum backaction limit Phys. Rev. Lett. 116, 063601 (2016)
Purdy, T.P., Peterson, R.W., Regal, C.A.: Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801 (2013)
LaHaye, M.D., Buu, O., Camarota, B., Schwab, K.C.: Approaching the quantum limit of a nanomechanical resonator. Science 304, 74 (2004)
Teufel, J.D., Donner, T., Beltran, M.A.C., Harlow, J.W., Lehnert, K.W.: Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnology 4, 820 (2009)
Krause, A.G., Winger, M., Blasius, T.D., Lin, Q., Painter, O.: A high-resolution microchip optomechanical accelerometer. Nat. Photonics 6, 768 (2012)
Huang, P., Wang, P. F., Zhou, J.W., Wang, Z.X., Ju, C.Y., Wang, Z.M., Shen, Y., Duan, C.K., Du, J.F.: Phys. Rev. Lett. 110, 227202 (2013)
Stannigel, K., Komar, P., Habraken, S.J.M., Bennett, S.D., Lukin, M.D., Zoller, P., Rabl, P.: Optomechanical quantum information processing with photons and phonons Phys. Rev. Lett. 109, 013603 (2012)
Fiore, V., Yang, Y., Kuzyk, M.C., Barbour, R., Tian, L., Wang, H.L.: Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011)
Agarwal, G.S., Huang, S.M.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)
Dong, C.H., Fiore, V., Kuzyk, M.C., Wang, H.L.: Optomechanical dark mode. Science 338, 1609 (2012)
Isart, O.R., Pflanzer, A.C., Blaser, F., Kaltenbaek, R., Kiesel, N., Aspelmeyer, M., Cirac, J.I.: Large quantum superpositions and interference of massive nanometer-sized objects. Phys. Rev. Lett. 107, 020405 (2011)
Yin, Z.Q., Li, T.C., Zhang, X., Duan, L.M.: Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013)
Rossi, M., Mason, D., Chen, J.X., Tsaturyan, Y., Schliesser, A.: Measurement-based quantum control of mechanical motion. Nature (London) 563, 39 (2018)
Lai, D.G., Huang, J.F., Yin, X.L., Hou, B.P., Li, W., Vitali, D., Nori, F., Liao, J.Q.: Nonreciprocal ground-state cooling of multiple mechanical resonators. Phys. Rev. A 102, 011502 (2020)
Lai, D.G., Zou, F., Hou, B.P., Xiao, Y.F., Liao, J.Q.: Simultaneous cooling of coupled mechanical resonators in cavity optomechanics. Phys. Rev. A 98, 023860 (2018)
Qi, L., Xing, Y., Liu, S.T., Zhang, S., Wang, H.F.: Topological phase induced by distinguishing parameter regimes in a cavity optomechanical system with multiple mechanical resonators. Phys. Rev. A 101, 052325 (2020)
Faust, T., Rieger, J., Seitner, M.J., Krenn, P., Kotthaus, J.P., Weig, E.M.: Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 109, 037205 (2012)
Seitner, M.J., Abdi, M., Ridolfo, A., Hartmann, M.J., Weig, E.M.: Parametric oscillation, frequency mixing, and injection locking of strongly coupled nanomechanical resonator modes. Phys Rev. Lett. 118, 254301 (2017)
Wang, Q., Xu, L., Wang, Y.M.: Simultaneous cooling the coupled nano-mechanical resonators in the strong optomechanical coupling regime. Laser Phys. 29, 065201 (2019)
Wang, Q., He, Z.: Cooling of coupled nano-mechanical resonators in the weak optomechanical coupling regime. Laser Phys. 29, 025201 (2019)
Genes, C., Vitali, D., Tombesi, P.: Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. 10, 095009 (2008)
Wang, M., Lü, X.Y., Miranowicz, A., Yin, T.S., Wu, Y., Nori, F.: Unconventional phonon blockade via atom-photon-phonon interaction in hybrid optomechanical systems. Phys. Rev. A 1806, 03754 (2018)
Wang, C., Lin, Q., He, B.: Breaking the optomechanical cooling limit by two drive fields on a membrane-in-the-middle system. Phys. Rev. A 99, 023829 (2019)
Liu, Y.C., Xiao, Y.F., Luan, X.S., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110, 153606 (2013)
Okamoto, H., Gourgout, A., Chang, C.Y., Onomitsu, K., Mahboob, I., Chang, E.Y., Yamaguchi, H.: Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 9, 480 (2013)
Grudinin, I.S., Lee, H., Painter, O., Vahala, K.J.: Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010)
Liu, Y.C., Xiao, Y.F., Luan, X., Gong, Q., Wong, C.W.: Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A 91, 033818 (2015)
Guo, Y.J., Li, K., Nie, W.J., Li, Y.: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 90, 053841 (2014)
Xu, Q.F., Dong, P., Lipson, M.: Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys. 3, 406 (2007)
Kondo, K., Shinkawa, M., Hamachi, Y., Saito, Y., Arita, Y., Baba, T.: Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides. Phys. Rev. Lett. 110, 053902 (2013)
O’Connell, A.D., et al.: Quantum ground state and single-phonon control of a mechanical resonator. Nature (London) 464, 697 (2010)
Cohen, J.D., Meenehan, S.M., MacCabe, G.S., Groblacher, S., Naeini, A.H.S., Marsili, F., Shaw, M.D., Painter, O.: Phonon counting and intensity interferometry of a nanomechanical resonator. Nature (London) 520, 522 (2015)
Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature (London) 495, 210 (2013)
Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature (London) 482, 63 (2012)
Acknowledgements
We thank Prof. ZhengJun Liu and Prof. JieQiao Liao for valuable discussion. This project was supported by the National Natural Science Foundation of China (Grant Nos. 61368002, 11674390, 91736106, 91836302), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB202046), the Open Project Program of CAS Key Laboratory of Quantum Information (Grant No. KQI201704), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201711).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A
1.1 The quantum Langevin equations
In the frame rotating at the input laser frequency \(\omega_{in}^{{}}\), the Hamiltonian is written as Eq. (2), where \(\Delta_{1}^{{}} = \omega_{in} - \omega_{1}\) and \(\Delta_{2}^{{}} = \omega_{in} - \omega_{2}\) are the detuning. The quantum Langevin equations are given by
\(\kappa_{l = 1,2}^{{}}\) and \(\gamma_{l = 1,2}^{{}}\) are the decay rates of the \(l\) cavity mode and the \(l\) mechanical mode, respectively. The \(a_{in,1}^{{}} ,a_{in,2}^{{}}\) and \(b_{in,1}^{{}} ,b_{in,2}^{{}}\) are the corresponding noise operators, in which these operators have zero mean values and the following correlation functions:
Here, \(n_{thl = th1,th2}\) are the thermal phonon number which is given by \(n_{thl = th1,th2} = \left[ {\exp \left( {\frac{{\hbar \omega_{ml = m1,m2} }}{{k_{B} T}}} \right) - 1} \right]^{ - 1}\) where \(T\) is the environmental temperature and \(k_{B}\) is Boltzmann constant.
For strong driving, the Hamiltonian can be linearized, with \(a_{1} \to \alpha_{1} + a_{{_{1} }}^{{\prime }}\),\(a_{2} \to \alpha_{2} + a_{{_{2} }}^{{\prime }}\),\(b_{1} \to \beta_{1} + b_{{_{1} }}^{{\prime }}\),\(b_{2} \to \beta_{2} + b_{{_{2} }}^{{\prime }}\). Here, \(a_{1}^{{\prime }}\),\(a_{2}^{{\prime }}\) and \(b_{1}^{{\prime }}\),\(b_{2}^{{\prime }}\) describe the quantum fluctuations around the mean values \(\alpha_{1} \equiv \left\langle {a_{1}^{{}} } \right\rangle ,\alpha_{2} \equiv \left\langle {a_{2}^{{}} } \right\rangle\) and \(\beta_{1} \equiv \left\langle {b_{1}^{{}} } \right\rangle ,\beta_{2} \equiv \left\langle {b_{2}^{{}} } \right\rangle\), respectively. For the sake of simplicity, \(a_{1}^{{\prime }}\),\(a_{2}^{{\prime }}\) and \(b_{1}^{{\prime }}\),\(b_{2}^{{\prime }}\) are still written as \(a_{1}^{{}}\),\(a_{2}^{{}}\) and \(b_{1}^{{}}\),\(b_{2}^{{}}\) behind. The quantum Langevin equations are rewritten as
where \(\Delta_{1}^{{\prime }} = \Delta_{1}^{{}} - g_{1} \left( {\beta_{1}^{ * } + \beta_{1}^{{}} } \right)\) and \(\Delta_{2}^{{\prime }} = \Delta_{2}^{{}} - g_{2} \left( {\beta_{2}^{ * } + \beta_{2}^{{}} } \right)\) are the optomechanical coupling modified detuning, respectively. Under strong driving conditions, the nonlinear terms \(ig_{l}^{{}} a_{l}^{{}} \left( {b_{l}^{\dag } + b_{l}^{{}} } \right)\left| \begin{gathered} \hfill \\ l = 1,2 \hfill \\ \end{gathered} \right.\) and \(ig_{l}^{{}} a_{l}^{\dag } a_{l}^{{}} \left| \begin{gathered} \hfill \\ l = 1,2 \hfill \\ \end{gathered} \right.\) in the above equations are neglected. Then, the quantum Langevin equations become linearized, and the linearized system Hamiltonian can be extracted as
where \(G_{1} = g_{1} \alpha_{1}\) and \(G_{2} = g_{2} \alpha_{2}\) describe the linear optomechanical coupling strength, respectively.
Appendix B
2.1 The differential equations
Rights and permissions
About this article
Cite this article
Liao, Q., Wu, J., Deng, W. et al. Dynamic dissipative synchronized cooling of two mechanical resonators in strong coupling optomechanics. Quantum Inf Process 20, 358 (2021). https://doi.org/10.1007/s11128-021-03219-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03219-5