Skip to main content
Log in

Hierarchical remote preparation of an arbitrary two-qubit state with multiparty

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Hierarchical remote preparation of an arbitrary two-qubit state has not been investigated by the previous work. We first put forward two deterministic schemes to realize the task among three agents by using two five-qubit cluster states as the quantum channel. To design these schemes, some useful and general measurement bases are constructed for the sender. Then, the two schemes are extended to multiparty with the aid of the symmetry of cluster state. There exists a hierarchy among the agents in terms of their ability to reconstruct the target state. The upper-grade agent requires the help of all the remaining upper-grade agents and anyone of the lower-grade agents. While the lower-grade agent needs the assistance of all the other agents. Finally, we consider the effect of two important decoherence noises: the amplitude-damping noise and phase-damping noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017)

    Article  ADS  Google Scholar 

  2. Ma, S.Y., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Probabilistic quantum network coding of M-qudit states over the butterfly network. Opt. Commun. 283, 497–501 (2010)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Lo, A.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  6. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  7. Ma, S.Y., Gao, C., Luo, M.X.: Efficient schemes of joint remote preparation with a passive receiver via EPR pairs. Chin. Phys. B 24, 110308 (2015)

    Article  ADS  Google Scholar 

  8. Wang, M.M., Qu, Z.G., Wang, W., Chen, J.G.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16, 140 (2017)

    Article  ADS  Google Scholar 

  9. Chen, W.L., Ma, S.Y., Qu, Z.G.: Controlled remote preparation of an arbitrary four-qubit cluster-type state. Chin. Phys. B 25, 100304 (2016)

    Article  ADS  Google Scholar 

  10. Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the Brown state with no restriction. Int. J. Theor. Phys. 55, 2643–2652 (2016)

    Article  Google Scholar 

  11. Ma, S.Y., Gong, L.: Deterministic bidirectional controlled remote preparation without information splitting. Quantum Inf. Process. 19, 255 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284, 4088–4093 (2011)

    Article  ADS  Google Scholar 

  13. Ma, S.Y., Gao, C., Zhang, P., Qu, Z.G.: Deterministic remote preparation via the Brown state. Quantum Inf. Process. 16, 93–114 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhou, N.R., Cheng, H.L., Tao, X.Y., Gong, L.H.: Three-party remote state preparation schemes based on entanglement. Quantum Inf. Process. 13, 513–526 (2014)

    Article  ADS  Google Scholar 

  15. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chen, N., Yan, B., Chen, G., Zhang, M.J., Pei, C.X.: Deterministic hierarchical joint remote state preparation with six-particle partially entangled state. Chin. Phys. B 27, 090304 (2018)

    Article  ADS  Google Scholar 

  17. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Hierarchical controlled remote state preparation by using a four-qubit cluster state. Int. J. Theor. Phys. 57, 1748–1755 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit \(|\chi \rangle \) entangled state. Quantum Inf. Process. 17, 105 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wang, N.N., Ma, S.Y.: Hierarchical controlled remote preparation via the Brown state under the noisy environment. Int. J. Theor. Phys. 59, 2816–2829 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Barik, S., Warke, A., Behera, B.K., Panigrahi, P.K.: Deterministic hierarchical remote state preparation of a two-qubit entangled state using Brown et al. state in a noisy environment. IET Quantum Commun. 1, 49–54 (2020)

    Article  Google Scholar 

  21. Wang, N.N., Ma, S.Y., Li, X.: Hierarchical controlled quantum communication via the \(\chi \) state under noisy environment. Mod. Phys. Lett. A 35, 2050306 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)

    Article  ADS  Google Scholar 

  23. Barreiro, J.T., Wei, T.C.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  24. Erhard, M., Qassim, H., Mand, H., Karimi, E., Boyd, R.W.: Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation. Phys. Rev. A 92, 022321 (2015)

    Article  ADS  Google Scholar 

  25. Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196–1199 (2010)

    Article  ADS  Google Scholar 

  26. Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum Inf. Process. 13, 43–57 (2014)

    Article  ADS  Google Scholar 

  27. Guo, W.M., Qin, L.R.: Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states. Chin. Phys. B 27, 110302 (2018)

    Article  ADS  Google Scholar 

  28. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  29. Zhou, N.R., Zhu, K.N., Zou, X.F.: Quantum communication: multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 531, 1970031 (2019)

    Article  Google Scholar 

  30. Nie, Y.Y., Li, Y.H., Wang, X.P., Sang, M.H.: Controlled dense coding using a five-atom cluster state in cavity QED. Quantum Inf. Process. 12, 1851–1857 (2013)

    Article  ADS  Google Scholar 

  31. Yuan, H., Zhang, W.B., Yin, X.F.: Simplistic quantum operation sharing with a five-qubit genuinely entangled state. Quantum Inf. Process. 19, 122 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Hein, M., Dür, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71, 032350 (2005)

    Article  ADS  Google Scholar 

  33. Dong, P., Xue, Z.Y., Yang, M., Cao, Z.L.: Generation of cluster states. Phys. Rev. A 73, 033818 (2006)

    Article  ADS  Google Scholar 

  34. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  35. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)

    Article  ADS  Google Scholar 

  36. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  37. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  38. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61201253, 61572246, 62172196), Open Foundation of State Key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (No. SKLNST-2020-2-02), the Open Foundation of Guangxi Key Laboratory of Trusted Software (No. KX202040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songya Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Take the first HRSP scheme with three agents as example, we calculate the output state of the upper-grade agent Bob under the AD noise in detail.

The effect on the shared channel \(\rho \) under the AD noise is

$$\begin{aligned} \varepsilon _a(\rho )= & {} \frac{1}{16}\{[|0000\rangle (|000000\rangle +\sqrt{{\tilde{\uplambda }}^3}(|010101\rangle +|101010\rangle ) +{\tilde{\uplambda }}^3|111111\rangle )\\&+\sqrt{{\tilde{\uplambda }}}|0101\rangle (|010000\rangle -\sqrt{{\tilde{\uplambda }}}|000101\rangle +\sqrt{{\tilde{\uplambda }}^3}|111010\rangle -{\tilde{\uplambda }}^2|101111\rangle )\\&+\sqrt{{\tilde{\uplambda }}}|1010\rangle (|100000\rangle +\sqrt{{\tilde{\uplambda }}^3}|110101\rangle -\sqrt{{\tilde{\uplambda }}}|001010\rangle -{\tilde{\uplambda }}^2|011111\rangle )\\&+{\tilde{\uplambda }}|1111\rangle (|110000\rangle -\sqrt{{\tilde{\uplambda }}}(|100101\rangle +|011010\rangle )+{\tilde{\uplambda }}|001111\rangle )]\\&\times [\langle 0000|(\langle 000000|+\sqrt{{\tilde{\uplambda }}^3}(\langle 010101|+\langle 101010|) +{\tilde{\uplambda }}^3\langle 111111|)\\&+\sqrt{{\tilde{\uplambda }}}\langle 0101|\langle 010000|-\sqrt{{\tilde{\uplambda }}}\langle 000101| +\sqrt{{\tilde{\uplambda }}^3}\langle 111010|-{\tilde{\uplambda }}^2\langle 101111|)\\&+\sqrt{{\tilde{\uplambda }}}\langle 1010|(\langle 100000|+\sqrt{{\tilde{\uplambda }}^3}\langle 110101| -\sqrt{{\tilde{\uplambda }}}\langle 001010|-{\tilde{\uplambda }}^2\langle 011111|)\\&+{\tilde{\uplambda }}\langle 1111|(\langle 110000|-\sqrt{{\tilde{\uplambda }}}(\langle 100101| +\langle 011010|)+{\tilde{\uplambda }}\langle 001111|)]\\&+\uplambda ^4[{\tilde{\uplambda }}|0000\rangle |11\rangle -\sqrt{{\tilde{\uplambda }}}(|0101\rangle |10\rangle +|1010\rangle |01\rangle )+|1111\rangle |00\rangle ]|0000\rangle \\&\times [{\tilde{\uplambda }}\langle 0000|\langle 11|-\sqrt{{\tilde{\uplambda }}}(\langle 0101|\langle 10| +\langle 1010|\langle 01|)+\langle 1111|\langle 00|]\langle 0000|]\\&+\uplambda ^2({\tilde{\uplambda }}^2|0000\rangle |001111\rangle +{\tilde{\uplambda }}|0101\rangle |001010\rangle +{\tilde{\uplambda }}|1010\rangle |000101\rangle \\&+|1111\rangle |000000\rangle )\times ({\tilde{\uplambda }}^2\langle 0000|\langle 001111| +{\tilde{\uplambda }}\langle 0101|\langle 001010|\\&+{\tilde{\uplambda }}\langle 1010|\langle 000101|+\langle 1111|\langle 000000|)+\uplambda ^6|0000000000\rangle \langle 0000000000|\}. \end{aligned}$$

For simple but without loss of generality, assume Alice’s first-step measurement result is \(|\xi _{00}\rangle _\mathrm{A_{11}A_{21}}\), the system of qubits \((\mathrm A_{12},A_{22},B_{11},B_{21},C_{11},C_{21},C_{12},C_{22})\) becomes

$$\begin{aligned} \rho _1= & {} \frac{1}{16P_1}\{[r_0|00\rangle (|000000\rangle +\sqrt{{\tilde{\uplambda }}^3}(|010101\rangle +|101010\rangle ) +{\tilde{\uplambda }}^3|111111\rangle )\\&+\sqrt{{\tilde{\uplambda }}}r_1|01\rangle (|010000\rangle -\sqrt{{\tilde{\uplambda }}}|000101\rangle +\sqrt{{\tilde{\uplambda }}^3}|111010\rangle -{\tilde{\uplambda }}^2|101111\rangle )\\&+\sqrt{{\tilde{\uplambda }}}r_2|10\rangle (|100000\rangle +\sqrt{{\tilde{\uplambda }}^3}|110101\rangle -\sqrt{{\tilde{\uplambda }}}|001010\rangle -{\tilde{\uplambda }}^2|011111\rangle )\\&+{\tilde{\uplambda }}r_3|11\rangle (|110000\rangle -\sqrt{{\tilde{\uplambda }}}(|100101\rangle +|011010\rangle ) +{\tilde{\uplambda }}|001111\rangle )]\\&\times [r_0\langle 00|(\langle 000000|+\sqrt{{\tilde{\uplambda }}^3}(\langle 010101|+\langle 101010|) +{\tilde{\uplambda }})^3\langle 111111|\\&+\sqrt{{\tilde{\uplambda }}}r_1\langle 01|(\langle 010000|-\sqrt{{\tilde{\uplambda }}}\langle 000101|+\sqrt{{\tilde{\uplambda }}^3}\langle 111010| -{\tilde{\uplambda }}^2\langle 101111|)\\&+\sqrt{{\tilde{\uplambda }}}r_2\langle 10|(\langle 100000|+\sqrt{{\tilde{\uplambda }}^3}\langle 110101|-\sqrt{{\tilde{\uplambda }}}\langle 001010| -{\tilde{\uplambda }}^2\langle 011111|)\\&+{\tilde{\uplambda }}r_3\langle 11|(\langle 110000|-\sqrt{{\tilde{\uplambda }}}(\langle 100101|+\langle 011010|)+{\tilde{\uplambda }}\langle 001111|)]\\&+\uplambda ^2[({\tilde{\uplambda }})^2r_0|00\rangle |001111\rangle +{\tilde{\uplambda }}(r_1|01\rangle |001010\rangle \\&+r_2|10\rangle |000101\rangle )+r_3|11\rangle |000000\rangle ]\\&\times [{\tilde{\uplambda }}^2r_0\langle 00|\langle 001111|+{\tilde{\uplambda }}(r_1\langle 01|\langle 001010|\\&+r_2\langle 10|\langle 000101|)+r_3\langle 11|\langle 000000|]\\&+\uplambda ^4[{\tilde{\uplambda }}r_0|00\rangle |110000\rangle -\sqrt{{\tilde{\uplambda }}}(r_1|01\rangle |100000\rangle \\&+r_2|10\rangle |010000\rangle )+r_3|11\rangle |000000\rangle ]\\&\times [{\tilde{\uplambda }}r_0\langle 00|\langle 110000|-\sqrt{{\tilde{\uplambda }}}(r_1\langle 01|\langle 100000|\\&+r_2\langle 10|\langle 010000|) +r_3\langle 11|\langle 000000|]\\&+\uplambda ^6r_0^2|00000000\rangle \langle 00000000|\}, \end{aligned}$$

where

$$\begin{aligned} P_1= & {} \mathrm{tr}\left( M_\mathrm{A}^{1^\dag }M_\mathrm{A}^1\varepsilon _a(\rho )\right) \\= & {} \frac{1}{16}\left\{ r_0^2\left[ \prod \limits _{j=1}^2(\uplambda ^{2j}+{\tilde{\uplambda }}^{2j})+2{\tilde{\uplambda }}^3+1\right] \right. \\&+{\tilde{\uplambda }}(r_1^2+r_2^2)[\uplambda ^4-\uplambda +2 +{\tilde{\uplambda }}^4+{\tilde{\uplambda }}^3+\uplambda ^2{\tilde{\uplambda }}]\\&\left. +r_3^2[\uplambda ^4+\uplambda ^2+{\tilde{\uplambda }}^2(2-\uplambda )^2]\right. \} \end{aligned}$$

is the probability that Alice gets the measurement result \(|\xi _{00}\rangle _\mathrm{A_{11}A_{21}}\).

Alice performs the unitary operation \(I_\mathrm{A_{12}}I_\mathrm{A_{22}}\) conditioned on her first-step measurement result. Then Alice measures her qubits \((\mathrm A_{12},A_{22})\) under the measurement basis in Eq. (12). If the measurement result \(|\eta _{00}\rangle \), the qubits \((\mathrm B_{11},B_{21},C_{11},C_{21},C_{12},C_{22})\) collapse into

$$\begin{aligned} \rho _2= & {} \frac{1}{16P_1P_2}\{[\alpha _0(|000000\rangle +\sqrt{{\tilde{\uplambda }}^3}(|010101\rangle +|101010\rangle ) +{\tilde{\uplambda }}^3|111111\rangle )\\&+\sqrt{{\tilde{\uplambda }}}\alpha _1(|010000\rangle -\sqrt{{\tilde{\uplambda }}}|000101\rangle +\sqrt{{\tilde{\uplambda }}^3}|111010\rangle -{\tilde{\uplambda }}^2|101111\rangle )\\&+\sqrt{{\tilde{\uplambda }}}\alpha _2(|100000\rangle +\sqrt{{\tilde{\uplambda }}^3}|110101\rangle -\sqrt{{\tilde{\uplambda }}}|001010\rangle -{\tilde{\uplambda }}^2|011111\rangle )\\&+{\tilde{\uplambda }}\alpha _3(|110000\rangle -\sqrt{{\tilde{\uplambda }}}(|100101\rangle +|011010\rangle )+{\tilde{\uplambda }}|001111\rangle )]\\&\times [\alpha _0^*(\langle 000000|+\sqrt{{\tilde{\uplambda }}^3}(\langle 010101|+\langle 101010|)+{\tilde{\uplambda }}^3\langle 111111|)\\&+\sqrt{{\tilde{\uplambda }}}\alpha _1^*(\langle 010000|-\sqrt{{\tilde{\uplambda }}}\langle 000101|+\sqrt{{\tilde{\uplambda }}^3}\langle 111010| -{\tilde{\uplambda }}^2\langle 101111|)\\&+\sqrt{{\tilde{\uplambda }}}\alpha _2^*(\langle 100000|+\sqrt{{\tilde{\uplambda }}^3}\langle 110101|-\sqrt{{\tilde{\uplambda }}}\langle 001010| -{\tilde{\uplambda }}^2\langle 011111|)\\&+{\tilde{\uplambda }}\alpha _3^*(\langle 110000|-\sqrt{{\tilde{\uplambda }}}(\langle 100101|+\langle 011010|)+{\tilde{\uplambda }}\langle 001111|)]\\&+\uplambda ^2[{\tilde{\uplambda }}^2\alpha _0|001111\rangle +{\tilde{\uplambda }}(\alpha _1|001010\rangle +\alpha _2|000101\rangle ) +\alpha _3|000000\rangle ]\\&\times [{\tilde{\uplambda }}^2\alpha _0^*\langle 001111|+{\tilde{\uplambda }}(\alpha _1^*\langle 001010| +\alpha _2^*\langle 000101|)+\alpha _3^*\langle 000000|]\\&+\uplambda ^4[{\tilde{\uplambda }}\alpha _0|110000\rangle -\sqrt{{\tilde{\uplambda }}}(\alpha _1|100000\rangle +\alpha _2|010000\rangle )+\alpha _3|000000\rangle ]\\&\times [{\tilde{\uplambda }}\alpha _0^*\langle 110000|-\sqrt{{\tilde{\uplambda }}}(\alpha _1^*\langle 100000| +\alpha _2^*\langle 010000|)+\alpha _3^*\langle 000000|]\\&+\uplambda ^6|\alpha _0|^2|000000\rangle \langle 000000|, \end{aligned}$$

where

$$\begin{aligned} P_2= & {} \mathrm{tr}\left( M_\mathrm{A}^{2^\dag }M_\mathrm{A}^2\varepsilon _a(\rho _1)\right) \\= & {} \frac{1}{16P_1}\left\{ \left[ \prod \limits _{j=1}^2(\uplambda ^{2j}+{\tilde{\uplambda }}^{2j})+2{\tilde{\uplambda }}^3+1\right] |\alpha _0|^2\right. \\&+{\tilde{\uplambda }} (\uplambda ^4-\uplambda +2+{\tilde{\uplambda }}^4+{\tilde{\uplambda }}^3+\uplambda ^2{\tilde{\uplambda }})(|\alpha _1|^2+|\alpha _2|^2)\\&+[\uplambda ^4+\uplambda ^2+{\tilde{\uplambda }}^2(2-\uplambda )^2]|\alpha _3|^2\bigg \} \end{aligned}$$

is the probability that Alice gets the measurement result \(|\eta _{00}\rangle _\mathrm{A_{12}A_{22}}\).

The agents consent the upper-grade agent Bob to recover the target state. Charlie\(_1\) exerts single-qubit projective measurement on his qubit \(\mathrm{C}_{11}\) under Z basis. If Charlie\(_1\)’s measurement outcome is \(|0\rangle \), the system of qubits \((\mathrm B_{11},B_{21},C_{21},C_{12},C_{22})\) becomes

$$\begin{aligned} \rho _3= & {} \frac{1}{16P_1P_2P_3}\left\{ [\alpha _0(|00000\rangle +\sqrt{{\tilde{\uplambda }}^3}|01101\rangle ) +\sqrt{{\tilde{\uplambda }}}\alpha _1(|01000\rangle -\sqrt{{\tilde{\uplambda }}}|00101\rangle )\right. \\&+\sqrt{{\tilde{\uplambda }}}\alpha _2(|10000\rangle +\sqrt{{\tilde{\uplambda }}^3}|11101\rangle ) +{\tilde{\uplambda }}\alpha _3(|11000\rangle -\sqrt{{\tilde{\uplambda }}}|10101\rangle )]\\&\times [\alpha _0^*(\langle 00000|+\sqrt{{\tilde{\uplambda }}^3}\langle 01101|) +\sqrt{{\tilde{\uplambda }}}\alpha _1^*(\langle 01000|-\sqrt{{\tilde{\uplambda }}}\langle 00101|)\\&+\sqrt{{\tilde{\uplambda }}}\alpha _2^*(\langle 10000|+\sqrt{{\tilde{\uplambda }}^3}\langle 11101|) +{\tilde{\uplambda }}\alpha _3^*(\langle 11000|-\sqrt{{\tilde{\uplambda }}}\langle 10101|)]\\&+\uplambda ^2({\tilde{\uplambda }}\alpha _2|00101\rangle +\alpha _3|00000\rangle ) \times ({\tilde{\uplambda }}\alpha _2^*\langle 00101|+\alpha _3^*\langle 00000|)\\&+\uplambda ^4[{\tilde{\uplambda }}\alpha _0|11000\rangle -\sqrt{{\tilde{\uplambda }}}(\alpha _1|10000\rangle +\alpha _2|01000\rangle )+\alpha _3|00000\rangle ]\\&\times [{\tilde{\uplambda }}\alpha _0^*\langle 11000|-\sqrt{{\tilde{\uplambda }}}(\alpha _1^*\langle 10000| +\alpha _2^*\langle 01000|)+\alpha _3^*\langle 00000|]\\&+\uplambda ^6|\alpha _0|^2|00000\rangle \langle 00000|, \end{aligned}$$

where

$$\begin{aligned} P_3= & {} \mathrm{tr}\left( M_{\mathrm{C}_1}^{3^\dag }M_{\mathrm{C}_1}^3\rho _2\right) \\= & {} \frac{1}{16P_1P_2}\left\{ |\alpha _0|^2(\uplambda ^6+\uplambda ^4{\tilde{\uplambda }}^2+{\tilde{\uplambda }}^3+1) +|\alpha _1|^2{\tilde{\uplambda }}(\uplambda ^4-\uplambda +2)\right. \\&\left. +|\alpha _2|^2{\tilde{\uplambda }} (\uplambda ^4-\uplambda ^2+\uplambda +{\tilde{\uplambda }}^3+1)+|\alpha _3|^2[\uplambda ^4+\uplambda ^2+{\tilde{\uplambda }}^2(\uplambda -2)^2]\right\} \end{aligned}$$

is the probability that Charlie\(_1\) gets the measurement result \(|0\rangle _\mathrm{C_{11}}\).

Charlie\(_1\) preforms single-qubit projective measurements on his qubit \(\mathrm{C}_{21}\) under the basis \(\{|0\rangle ,|1\rangle \}\). If Charlie\(_1\)’s measurement outcome is \(|0\rangle \), the system of qubits \((\mathrm B_{11},B_{21},C_{12},C_{22})\) becomes

$$\begin{aligned} \rho _4= & {} \frac{1}{16P_1P_2P_3P_4}\left\{ [\alpha _0|00\rangle +\sqrt{{\tilde{\uplambda }}}(\alpha _1|01\rangle +\alpha _2|10\rangle )+\alpha _3{\tilde{\uplambda }}|11\rangle ]|00\rangle \right. \\&\times [\alpha _0^*\langle 00|+\sqrt{{\tilde{\uplambda }}}(\alpha _1^*\langle 01| +\alpha _2^*\langle 10|)+\alpha _3^*{\tilde{\uplambda }}\langle 11|]\langle 00| +\uplambda ^2|\alpha _3|^2|0000\rangle \langle 0000|\\&+\uplambda ^4[{\tilde{\uplambda }}\alpha _0|11\rangle -\sqrt{{\tilde{\uplambda }}}(\alpha _1|10\rangle +\alpha _2|01\rangle )+\alpha _3|00\rangle ]|00\rangle \\&\left. \times [{\tilde{\uplambda }}\alpha _0^*\langle 11|-\sqrt{{\tilde{\uplambda }}}(\alpha _1^*\langle 10| +\alpha _2^*\langle 01|)+\alpha _3^*\langle 00|]\langle 00| +\uplambda ^6|\alpha _0|^2|0000\rangle \langle 0000|\right\} , \end{aligned}$$

where

$$\begin{aligned} P_4= & {} \mathrm{tr}\left( M_{\mathrm{C}_1}^{4^\dag }M_{\mathrm{C}_1}^4\rho _3\right) \\= & {} \frac{1}{16P_1P_2P_3}[{\tilde{\uplambda }}(\uplambda ^4+1) -\uplambda ^5(2\uplambda -1)|\alpha _0|^2 +\uplambda (\uplambda ^4+2\uplambda -1)|\alpha _3|^2] \end{aligned}$$

is the probability that Charlie\(_1\) gets the measurement result \(|0\rangle _\mathrm{C_{21}}\).

According to Alice’s and Charlie\(_1\)’s measurement results, Bob performs recovery operation \(I_\mathrm{B_{11}}I_\mathrm{B_{21}}\) and gets the output state in Eq. (47).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Wang, N. Hierarchical remote preparation of an arbitrary two-qubit state with multiparty. Quantum Inf Process 20, 276 (2021). https://doi.org/10.1007/s11128-021-03220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03220-y

Keywords

Navigation