Skip to main content
Log in

Entanglement of hybrid state by a constant electric field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Schwinger effect on the entanglement of a hybrid state is studied in this paper. We consider a system composed of a qubit and a bosonic mode. We show that when only the bosonic mode is coupled with a constant electric field, entanglement depends on the strength of the electric field. The results show that the entanglement between the qubit and the bosonic particle decreases with increasing the value of the electric field. Furthermore, applying the electric field creates entanglement between the qubit and antiparticle mode where initially there is no entanglement between them. Moreover, we analyze the variation of entanglement with respect to other parameters such as the mass of the particles and the parameter of hybrid state, \(\alpha \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Doukas, J., Lin, S.-Y., Hu, B.L., Mann, R.B.: Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh-DeWitt detector. JHEP 11, 119 (2013)

    Article  ADS  Google Scholar 

  2. Brown, E.G., Martin-Martinez, E., Menicucci, N.C., Mann, R.B.: Detectors for probing relativistic quantum physics beyond perturbation theory. Phys. Rev. D 87, 084062 (2013)

    Article  ADS  Google Scholar 

  3. Hummer, D., Martin-Martinez, E., Kempf, A.: Renormalized Unruh-DeWitt particle detector models for boson and fermion fields. Phys. Rev. D 93, 024019 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bruschi, D.E., Fuentes, I., Louko, J.: Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion. Phys. Rev. D 85, 061701 (2012)

    Article  ADS  Google Scholar 

  5. Lima, A.P.C.M., Alencar, G., Landim, R.R.: Asymptotic states of accelerated qubits in nonzero background temperature. Phys. Rev. D 101, 125008 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Pan, Y., Zhang, B.: Influence of acceleration on multibody entangled quantum states. Phys. Rev. A 101, 062111 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Pan, Q., Jing, J.: Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole. Phys. Rev. D 78, 065015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Montero, M., Martin-Martinez, E.: The entangling side of the Unruh-Hawking effect. JHEP 7, 6 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Martin-Martinez, E., Garay, L.J., Leon, J.: Quantum entanglement produced in the formation of a black hole. Phys. Rev. D 82, 064028 (2009)

    Article  ADS  Google Scholar 

  10. Ebadi, Z., Mirza, B.: Entanglement generation by electric field background. Ann. Phys. (NY) 351, 363–381 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Li, Y., Mao, Q., Shi, Y.: Schwinger effect of a relativistic boson entangled with a qubit. Phys. Rev. A 99, 032340 (2019)

    Article  ADS  Google Scholar 

  12. Sauter, F.: On the behavior of an electron in a homogeneous electric field in Dirac’s relativistic theory. Z. Phys. 69, 742 (1931)

    Article  ADS  Google Scholar 

  13. Heisenberg, W., Euler, H.: Folgerungen aus der diracschen theorie des positrons. Z. Phys. 98, 714 (1936)

    Article  ADS  Google Scholar 

  14. Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  15. Pineiro, A.M., Genkina, D., Lu, M., Spielman, I.B.: Sauter-Schwinger effect with a quantum gas. New J. Phys. 21, 083035 (2019)

    Article  ADS  Google Scholar 

  16. Allor, D., Cohen, T.D., McGady, D.A.: Schwinger mechanism and graphene. Phys. Rev. D 78, 096009 (2008)

    Article  ADS  Google Scholar 

  17. Fillion-Gourdeau, F., MacLean, S.: Time-dependent pair creation and the Schwinger mechanism in graphene. Phys. Rev. B 92, 035401 (2015)

    Article  ADS  Google Scholar 

  18. Linder, M.F., Lorke, A., Schützhold, R.: Analog Sauter-Schwinger effect in semiconductors for spacetime-dependent fields. Phys. Rev. B 97, 035203 (2018)

    Article  ADS  Google Scholar 

  19. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  20. Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)

    Article  ADS  Google Scholar 

  21. Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Entanglement swapping and teleportation based on cavity QED method using the nonlinear atom-field interaction: Cavities with a hybrid of coherent and number states. Opt. Commun. 382, 381 (2017)

    Article  ADS  Google Scholar 

  22. Rigas, J., Guhne, O., Lutkenhaus, N.: Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure. Phys. Rev. A 73, 012341 (2006)

    Article  ADS  Google Scholar 

  23. Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)

    Article  ADS  Google Scholar 

  24. Jeong, H., Zavatta, A., Kang, M., Lee, S.-W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nature Photon. 8, 564 (2014)

    Article  ADS  Google Scholar 

  25. Morin, O., Huang, K., Liu, J., Jeannic, H.L., Fabre, C., Laurat, J.: Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nature Photon. 8, 570 (2014)

    Article  ADS  Google Scholar 

  26. Glauber, J.R.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  28. Klauder, J.R.: Continuous-representation theory. I. Postulates of continuous-representation theory. J. Math. Phys. 4, 1055 (1963)

  29. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, F., Miry, S.R. Entanglement of hybrid state by a constant electric field. Quantum Inf Process 20, 301 (2021). https://doi.org/10.1007/s11128-021-03224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03224-8

Keywords

Navigation