Abstract
The Schwinger effect on the entanglement of a hybrid state is studied in this paper. We consider a system composed of a qubit and a bosonic mode. We show that when only the bosonic mode is coupled with a constant electric field, entanglement depends on the strength of the electric field. The results show that the entanglement between the qubit and the bosonic particle decreases with increasing the value of the electric field. Furthermore, applying the electric field creates entanglement between the qubit and antiparticle mode where initially there is no entanglement between them. Moreover, we analyze the variation of entanglement with respect to other parameters such as the mass of the particles and the parameter of hybrid state, \(\alpha \).





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Doukas, J., Lin, S.-Y., Hu, B.L., Mann, R.B.: Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh-DeWitt detector. JHEP 11, 119 (2013)
Brown, E.G., Martin-Martinez, E., Menicucci, N.C., Mann, R.B.: Detectors for probing relativistic quantum physics beyond perturbation theory. Phys. Rev. D 87, 084062 (2013)
Hummer, D., Martin-Martinez, E., Kempf, A.: Renormalized Unruh-DeWitt particle detector models for boson and fermion fields. Phys. Rev. D 93, 024019 (2016)
Bruschi, D.E., Fuentes, I., Louko, J.: Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion. Phys. Rev. D 85, 061701 (2012)
Lima, A.P.C.M., Alencar, G., Landim, R.R.: Asymptotic states of accelerated qubits in nonzero background temperature. Phys. Rev. D 101, 125008 (2020)
Pan, Y., Zhang, B.: Influence of acceleration on multibody entangled quantum states. Phys. Rev. A 101, 062111 (2020)
Pan, Q., Jing, J.: Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole. Phys. Rev. D 78, 065015 (2008)
Montero, M., Martin-Martinez, E.: The entangling side of the Unruh-Hawking effect. JHEP 7, 6 (2011)
Martin-Martinez, E., Garay, L.J., Leon, J.: Quantum entanglement produced in the formation of a black hole. Phys. Rev. D 82, 064028 (2009)
Ebadi, Z., Mirza, B.: Entanglement generation by electric field background. Ann. Phys. (NY) 351, 363–381 (2014)
Li, Y., Mao, Q., Shi, Y.: Schwinger effect of a relativistic boson entangled with a qubit. Phys. Rev. A 99, 032340 (2019)
Sauter, F.: On the behavior of an electron in a homogeneous electric field in Dirac’s relativistic theory. Z. Phys. 69, 742 (1931)
Heisenberg, W., Euler, H.: Folgerungen aus der diracschen theorie des positrons. Z. Phys. 98, 714 (1936)
Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)
Pineiro, A.M., Genkina, D., Lu, M., Spielman, I.B.: Sauter-Schwinger effect with a quantum gas. New J. Phys. 21, 083035 (2019)
Allor, D., Cohen, T.D., McGady, D.A.: Schwinger mechanism and graphene. Phys. Rev. D 78, 096009 (2008)
Fillion-Gourdeau, F., MacLean, S.: Time-dependent pair creation and the Schwinger mechanism in graphene. Phys. Rev. B 92, 035401 (2015)
Linder, M.F., Lorke, A., Schützhold, R.: Analog Sauter-Schwinger effect in semiconductors for spacetime-dependent fields. Phys. Rev. B 97, 035203 (2018)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)
Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)
Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Entanglement swapping and teleportation based on cavity QED method using the nonlinear atom-field interaction: Cavities with a hybrid of coherent and number states. Opt. Commun. 382, 381 (2017)
Rigas, J., Guhne, O., Lutkenhaus, N.: Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure. Phys. Rev. A 73, 012341 (2006)
Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)
Jeong, H., Zavatta, A., Kang, M., Lee, S.-W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nature Photon. 8, 564 (2014)
Morin, O., Huang, K., Liu, J., Jeannic, H.L., Fabre, C., Laurat, J.: Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nature Photon. 8, 570 (2014)
Glauber, J.R.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)
Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)
Klauder, J.R.: Continuous-representation theory. I. Postulates of continuous-representation theory. J. Math. Phys. 4, 1055 (1963)
Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ahmadi, F., Miry, S.R. Entanglement of hybrid state by a constant electric field. Quantum Inf Process 20, 301 (2021). https://doi.org/10.1007/s11128-021-03224-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03224-8