Skip to main content

Advertisement

Log in

Novel encoding–decoding procedure for quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This work proposes an encoding–decoding procedure, which is characterized with higher efficiency, i.e., it increases the size of the sifted key. The contribution comes from using a novel way of decoding the data carried by the quantum systems. The proposed approach is analyzed in terms of efficiency, security, randomness, error rate, and capability of high dimensionality. It is shown that the newly proposed technique demonstrates higher efficiency, slightly better security, similar randomness, compatibility with high dimensionality, but less error robustness than the standard encoding–decoding scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing, Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, 175-179 (1984)

  2. Ekert, A.: Quantum cryptography based on Bellas theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C., Brassard, G., Mermin, N.: Quantum cryptography without Bellas theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002)

    Article  ADS  Google Scholar 

  6. Stucki, D., Brunner, N., Gisin, N., Scarani, V., Zbinden, H.: Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87, 194108 (2005)

    Article  ADS  Google Scholar 

  7. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  9. Wang, C., Deng, F., Li, Y., Liu, X., Long, G.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  11. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  12. Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 783 (2011)

    Article  ADS  Google Scholar 

  13. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. QIP 14, 739 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Joy, D., Surendran, S., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. QIP 16, 1 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Yan, F., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75 (2004)

    Article  ADS  Google Scholar 

  16. Gao, T., Yan, F., Wang, X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14, 893 (2005)

    Article  Google Scholar 

  17. Zhu, A., Xia, Y., Fan, Q., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  18. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: Different alternative approaches. QIP 14, 2195 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Cao, Z., Li, Y., Peng, J., Chai, G., Zhao, G.: Controlled quantum secure direct communication protocol based on huffman compression coding. Int. J. Theor. Phys. 57, 3632 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gong, L.-H., et al.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89, 035101 (2014)

    Article  ADS  Google Scholar 

  21. Zhou, N.-R., Zhu, K.-N., Zou, X.-F.: Multi-party semi-quantum key distribution protocol with four-particle cluster state. Annalen Der Physik 531, 1800520 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. Mayers, D., Yao, A.: Quantum cryptography with imperfect apparatus, Proceedings of the 39th Annual Symposium on Foundations of Computer Science(FOCS98) (IEEE Computer Society, Washington, DC, 1998), p. 503 (1998)

  23. Acín, A., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  24. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  25. Lo, H.-K., Curty, M., Qi, B.: Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  26. Jo, Y., Son, W.: Key-rate enhancement using qutrit states for quantum key distribution with askew aligned sources. Phys. Rev. A 94, 052316 (2016)

    Article  ADS  Google Scholar 

  27. Dellantonio, L., Sørensen, A., Bacco, D.: High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys. Rev. A 98, 062301 (2018)

    Article  ADS  Google Scholar 

  28. Xu, F.: Measurement-device-independent quantum communication with an untrusted source. Phys. Rev. A 92, 012333 (2015)

    Article  ADS  Google Scholar 

  29. Zhao, Y., Zhang, Y., Xu, B., Yu, S., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction. Phys. Rev. A 97, 042328 (2018)

    Article  ADS  Google Scholar 

  30. Zhang, C.-M., et al.: Decoy-state measurement-device-independent quantum key distribution based on the Clauser-Horne-Shimony-Holt inequality. Phys. Rev. A 90, 034302 (2014)

    Article  ADS  Google Scholar 

  31. Liu, H., et al.: Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels. Phys. Rev. Lett. 122, 160501 (2019)

    Article  ADS  Google Scholar 

  32. Ma, H.-X., et al.: Continuous-variable measurement-device-independent quantum key distribution with photon subtraction. Phys. Rev. A 97, 042329 (2018)

    Article  ADS  Google Scholar 

  33. Zhou, C., et al.: Biased decoy-state measurement-device-independent quantum key distribution with finite resources. Phys. Rev. A 91, 022313 (2015)

    Article  ADS  Google Scholar 

  34. Zhang, Y.-C., Li, Z., Yu, S., Gu, W., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)

    Article  ADS  Google Scholar 

  35. Puthoor, I., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94, 022328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhang, C.-H., Zhang, C.-M., Wang, Q.: Efficient passive measurement-device-independent quantum key distribution. Phys. Rev. A 99, 052325 (2019)

    Article  ADS  Google Scholar 

  37. Cao, W.-F., et al.: One-sided measurement-device-independent quantum key distribution. Phys. Rev. 97, 012313 (2018)

    Article  Google Scholar 

  38. Shan, Y.-Z., et al.: Measurement-device-independent quantum key distribution with a passive decoy-state method. Phys. Rev. A 90, 042334 (2014)

    Article  ADS  Google Scholar 

  39. Yang, X., et al.: Measurement-device-independent entanglement-based quantum key distribution. Phys. Rev. A 93, 052303 (2016)

    Article  ADS  Google Scholar 

  40. Abruzzo, S., Kampermann, H., Bruß, D.: Measurement-device-independent quantum key distribution with quantum memories. Phys. Rev. A 89, 012301 (2014)

    Article  ADS  Google Scholar 

  41. Wu, Y., Zhou, J., Gong, X., Guo, Y., Zhang, Z.-M., He, G.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93, 022325 (2016)

    Article  ADS  Google Scholar 

  42. Islam, N.: High-Rate. High-Dimensional Quantum Key Distribution Systems. Springer Theses, Springer Nature Switzerland AG (2018)

    MATH  Google Scholar 

  43. Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light. Sci. Appl. 7, 17146 (2018)

    Article  Google Scholar 

  44. Brassard, G., Salvail, L.: Secret-Key Reconciliation by Public Discussion, Advances in Cryptology - EUROCRYPT 93. EUROCRYPT, : Lecture Notes in Computer Science 765. Springer, Berlin, Heidelberg (1993)

  45. Bennett, Ch., Brassard, G., Crepeau, C., Maurer, U.: Generalized Privacy Amplification. IEEE Trans. Inf. Theory 41, 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Cabello, A.: Quantum Key Distribution in the Holevo Limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  47. Golomb, S.: Shift Register Sequences 24–27,(1967)

  48. Bebrov, G.: Randomness Properties of Key Expanding Function in MDI-QKD - under review

  49. Mehic, M., Niemiec, M., Siljak, H., Voznak, M.: Error reconciliation in quantum key distribution protocols, In: Ulidowski I., Lanese I., Schultz U., Ferreira C. (Eds.) Reversible Computation: extending Horizons of Computing. RC 2020. Lecture Notes in Computer Science 12070, p. 2020. Springer, Cham (2020)

Download references

Acknowledgements

The work is supported by the project K\(\Pi \)-06-H37/1 /06.12.2019 and funded by National Science Fund, Ministry of Education and Science, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Bebrov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebrov, G. Novel encoding–decoding procedure for quantum key distribution. Quantum Inf Process 20, 296 (2021). https://doi.org/10.1007/s11128-021-03235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03235-5

Keywords