Abstract
This work proposes an encoding–decoding procedure, which is characterized with higher efficiency, i.e., it increases the size of the sifted key. The contribution comes from using a novel way of decoding the data carried by the quantum systems. The proposed approach is analyzed in terms of efficiency, security, randomness, error rate, and capability of high dimensionality. It is shown that the newly proposed technique demonstrates higher efficiency, slightly better security, similar randomness, compatibility with high dimensionality, but less error robustness than the standard encoding–decoding scheme.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing, Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, 175-179 (1984)
Ekert, A.: Quantum cryptography based on Bellas theorem. Phys. Rev. Lett. 67, 661 (1991)
Bennett, C., Brassard, G., Mermin, N.: Quantum cryptography without Bellas theorem. Phys. Rev. Lett. 68, 557 (1992)
Bennett, C.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)
Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002)
Stucki, D., Brunner, N., Gisin, N., Scarani, V., Zbinden, H.: Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87, 194108 (2005)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Wang, C., Deng, F., Li, Y., Liu, X., Long, G.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)
Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)
Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 783 (2011)
Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. QIP 14, 739 (2014)
Joy, D., Surendran, S., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. QIP 16, 1 (2017)
Yan, F., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75 (2004)
Gao, T., Yan, F., Wang, X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14, 893 (2005)
Zhu, A., Xia, Y., Fan, Q., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)
Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: Different alternative approaches. QIP 14, 2195 (2015)
Cao, Z., Li, Y., Peng, J., Chai, G., Zhao, G.: Controlled quantum secure direct communication protocol based on huffman compression coding. Int. J. Theor. Phys. 57, 3632 (2018)
Gong, L.-H., et al.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89, 035101 (2014)
Zhou, N.-R., Zhu, K.-N., Zou, X.-F.: Multi-party semi-quantum key distribution protocol with four-particle cluster state. Annalen Der Physik 531, 1800520 (2019)
Mayers, D., Yao, A.: Quantum cryptography with imperfect apparatus, Proceedings of the 39th Annual Symposium on Foundations of Computer Science(FOCS98) (IEEE Computer Society, Washington, DC, 1998), p. 503 (1998)
Acín, A., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)
Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)
Lo, H.-K., Curty, M., Qi, B.: Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 108, 130503 (2012)
Jo, Y., Son, W.: Key-rate enhancement using qutrit states for quantum key distribution with askew aligned sources. Phys. Rev. A 94, 052316 (2016)
Dellantonio, L., Sørensen, A., Bacco, D.: High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys. Rev. A 98, 062301 (2018)
Xu, F.: Measurement-device-independent quantum communication with an untrusted source. Phys. Rev. A 92, 012333 (2015)
Zhao, Y., Zhang, Y., Xu, B., Yu, S., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction. Phys. Rev. A 97, 042328 (2018)
Zhang, C.-M., et al.: Decoy-state measurement-device-independent quantum key distribution based on the Clauser-Horne-Shimony-Holt inequality. Phys. Rev. A 90, 034302 (2014)
Liu, H., et al.: Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels. Phys. Rev. Lett. 122, 160501 (2019)
Ma, H.-X., et al.: Continuous-variable measurement-device-independent quantum key distribution with photon subtraction. Phys. Rev. A 97, 042329 (2018)
Zhou, C., et al.: Biased decoy-state measurement-device-independent quantum key distribution with finite resources. Phys. Rev. A 91, 022313 (2015)
Zhang, Y.-C., Li, Z., Yu, S., Gu, W., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)
Puthoor, I., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94, 022328 (2016)
Zhang, C.-H., Zhang, C.-M., Wang, Q.: Efficient passive measurement-device-independent quantum key distribution. Phys. Rev. A 99, 052325 (2019)
Cao, W.-F., et al.: One-sided measurement-device-independent quantum key distribution. Phys. Rev. 97, 012313 (2018)
Shan, Y.-Z., et al.: Measurement-device-independent quantum key distribution with a passive decoy-state method. Phys. Rev. A 90, 042334 (2014)
Yang, X., et al.: Measurement-device-independent entanglement-based quantum key distribution. Phys. Rev. A 93, 052303 (2016)
Abruzzo, S., Kampermann, H., Bruß, D.: Measurement-device-independent quantum key distribution with quantum memories. Phys. Rev. A 89, 012301 (2014)
Wu, Y., Zhou, J., Gong, X., Guo, Y., Zhang, Z.-M., He, G.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93, 022325 (2016)
Islam, N.: High-Rate. High-Dimensional Quantum Key Distribution Systems. Springer Theses, Springer Nature Switzerland AG (2018)
Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light. Sci. Appl. 7, 17146 (2018)
Brassard, G., Salvail, L.: Secret-Key Reconciliation by Public Discussion, Advances in Cryptology - EUROCRYPT 93. EUROCRYPT, : Lecture Notes in Computer Science 765. Springer, Berlin, Heidelberg (1993)
Bennett, Ch., Brassard, G., Crepeau, C., Maurer, U.: Generalized Privacy Amplification. IEEE Trans. Inf. Theory 41, 1915–1923 (1995)
Cabello, A.: Quantum Key Distribution in the Holevo Limit. Phys. Rev. Lett. 85, 5635 (2000)
Golomb, S.: Shift Register Sequences 24–27,(1967)
Bebrov, G.: Randomness Properties of Key Expanding Function in MDI-QKD - under review
Mehic, M., Niemiec, M., Siljak, H., Voznak, M.: Error reconciliation in quantum key distribution protocols, In: Ulidowski I., Lanese I., Schultz U., Ferreira C. (Eds.) Reversible Computation: extending Horizons of Computing. RC 2020. Lecture Notes in Computer Science 12070, p. 2020. Springer, Cham (2020)
Acknowledgements
The work is supported by the project K\(\Pi \)-06-H37/1 /06.12.2019 and funded by National Science Fund, Ministry of Education and Science, Bulgaria.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bebrov, G. Novel encoding–decoding procedure for quantum key distribution. Quantum Inf Process 20, 296 (2021). https://doi.org/10.1007/s11128-021-03235-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03235-5