Skip to main content
Log in

Microwave photonic circulator based on optomechanical-like interactions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The circulator is an important device in quantum information, which can route the input state to a designated output channel. In this work, we propose a scheme to realize a microwave photonic circulator based on optomechanical-like superconducting interactions. Our setup involves three high-frequency (HF) resonators and a low-frequency (LF) resonator. The HF resonators are coupled to the LF frequency resonator by the superconducting quantum interference device, and the HF resonators are coupled each other via linear interactions. Driving the HF resonators with three coherent fields results in synthetic magnetic fluxes, which, in combination with dissipative coupling to the LF resonator’s bath, leads to nonreciprocal transports of microwave photons. Different from circulators based on the optomechanical system, our scheme has stronger coupling and no thermal phonon noise. In the specific phase relationship, we calculate the nonreciprocal condition of the microwave photonic circulator and find that the transmission direction can be controlled by the phase differences between the driving fields. We obtain the parameters that affect the bandwidth. Moreover, we investigate the effects of imperfection. Our results provide a theoretical proposal for the realization of a high-isolation (68.4 dB) and low-dissipation microwave photonic circulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The data that support the findings of this study are available within the article.

References

  1. Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R., Lucero, E., Neeley, M., Oconnell, A., Sank, D., Wenner, J., Martinis, J., Cleland, A.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546 (2009)

    Article  ADS  Google Scholar 

  2. Vijay, R., Slichter, D.H., Siddiqi, I.: Microwave photonics with superconducting quantum circuits. Phys. Rev. Lett. 106, 110502 (2011)

    Article  ADS  Google Scholar 

  3. Gu, X., Kockum, A.F., Miranowicz, A., Xiliu, Y., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ofek, N., Petrenko, A., Heeres, R., Reinhold, P., Leghtas, Z., Vlastakis, B., Liu, Y., Frunzio, L.L., Girvin, S., Jiang, L., Mirrahimi, M., Devoret, M., Schoelkopf, R.: Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016)

    Article  ADS  Google Scholar 

  5. Wang, X., Liu, T., Kockum, A.F., Li, H.-R., Nori, F.: Tunable Chiral Bound States with Giant Atoms. Phys. Rev. Lett. 126, 126 (2021)

    Google Scholar 

  6. Kubo, Y., Ong, F.R., Bertet, P., Vion, D., Jacques, V., Zheng, D., Dreau, A., Roch, J.-F., Auffeves, A., Jelezko, F., Wrachtrup, J., Barthe, M.F., Bergonzo, P., Esteve, D.: Strong Coupling of a Spin Ensemble to a Superconducting Resonator. Phys. Rev. Lett. 105, 140502 (2010)

    Article  ADS  Google Scholar 

  7. Schuster, D.I., Fragner, A., Dykman, M.I., Lyon, S.A., Schoelkopf, R.J.: Proposal for manipulating and detecting spin and orbital states of trapped electrons on helium using cavity quantum electrodynamics. Phys. Rev. Lett. 105, 040503 (2010)

    Article  ADS  Google Scholar 

  8. Petersson, K., McFaul, L., Schroer, M., Jung, M., Taylor, J., Houck, A., Petta, J.: Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–3 (2012)

    Article  ADS  Google Scholar 

  9. Eichler, C., Sigillito, A.J., Lyon, S.A., Petta, J.R.: Electron Spin Resonance at the Level of \(1{0}^{4}\) Spins Using Low Impedance Superconducting Resonators. Phys. Rev. Lett. 118, 037701 (2017)

    Article  ADS  Google Scholar 

  10. Toth, L.D., Bernier, N., Nunnenkamp, A., Feofanov, A., Kippenberg, T.: A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13, 787–793 (2017)

    Article  Google Scholar 

  11. Xiang, Z.-L., Ashhab, S., You, J., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2012)

    Article  ADS  Google Scholar 

  12. Wallraff, A., Schuster, D., Blais, A., Frunzio, L., Huang, R., Majer, J., Kumar, S., Girvin, S., Schoelkopf, R.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    Article  ADS  Google Scholar 

  13. Marquardt, F., Girvin, S.M.: Trend: optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  14. Aspelmeyer, M., Kippenberg, T., Marquardt, F.: Cavity Optomechanics. Rev. Mod. Phys. 86, 1391 (2013)

    Article  ADS  Google Scholar 

  15. Antognozzi, M., Bermingham, C., Harniman, R., Simpson, S., Senior, J., Hayward, R., Hoerber, J., Dennis, M., Bekshaev, A., Bliokh, K., Nori, F.: Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 12, 731 (2016)

    Article  Google Scholar 

  16. Metcalfe, M.: Applications of Cavity Optomechanics. Appl. Phys. Rev. 1, 031105 (2014)

    Article  ADS  Google Scholar 

  17. Wang X., Qin W., Miranowicz A., Savasta S., Nori F.: Unconventional cavity optomechanics: Nonlinear control of phonons in the acoustic quantum vacuum. 100 063827 (2019)

  18. Teufel, J., Donner, T., Li, D., Harlow, J., Allman, M., Cicak, K., Sirois, A., Whittaker, J., Lehnert, K., Simmonds, R.: Sideband Cooling of Micromechanical Motion to the Quantum Ground State. Nature 475, 359–63 (2011)

    Article  ADS  Google Scholar 

  19. Chan, J., Alegre, T.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    Article  ADS  Google Scholar 

  20. Chang, Y., Shi, T., Liu, Y.-X., Sun, C.P., Nori, F.: Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities. Phys. Rev. A 83, 063826 (2011)

    Article  ADS  Google Scholar 

  21. Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012)

    Article  ADS  Google Scholar 

  22. Lü, X.-Y., Wu, Y., Johansson, J.R., Jing, H., Zhang, J., Nori Franco, F.: Squeezed Optomechanics with Phase-Matched Amplification and Dissipation. Phys. Rev. Lett. 114, 093602 (2015)

    Article  ADS  Google Scholar 

  23. Lai, D.-G., Wang, X., Qin, W., Hou, B.-P., Nori, F., Liao, J.-Q.: Tunable optomechanically induced transparency by controlling the dark-mode effect. Phys. Rev. A 102, 023707 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Rosenberg, J., Lin, Q., Painter, O.: Static and dynamic wavelength routing via the gradient optical force. Nat. Photonics 3, 478–483 (2009)

    Article  ADS  Google Scholar 

  25. Fang, K., Luo, J., Metelmann, A., Matheny, M.H., Marquardt, F., Clerk, A.A., Painter, O.: Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017)

    Article  Google Scholar 

  26. Tian, L., Li, Z.: Nonreciprocal quantum-state conversion between microwave and optical photons. Phys. Rev. A 96, 013808 (2017)

    Article  ADS  Google Scholar 

  27. Wang, Y.-D., Clerk, A.A.: Using Interference for High Fidelity Quantum State Transfer in Optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  28. Tian, L.: Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems. Phys. Rev. Lett. 108, 153604 (2012)

    Article  ADS  Google Scholar 

  29. Dong, Chunhua and Fiore, Victor and Kuzyk, Mark C, Wang, Hailin (2012) Optomechanical dark mode Science 338, 1609–1613

  30. Richer, S., DiVincenzo, D.: Circuit design implementing longitudinal coupling: A scalable scheme for superconducting qubits. Phys. Rev. B 93, 134501 (2016)

    Article  ADS  Google Scholar 

  31. Billangeon, P.-M., Tsai, J.S., Nakamura, Y.: Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits. Phys. Rev. B 91, 094517 (2015)

    Article  ADS  Google Scholar 

  32. Johansson, J.R., Johansson, G., Nori, F.: Optomechanical-like coupling between superconducting resonators. Phys. Rev. A 90, 053833 (2014)

    Article  ADS  Google Scholar 

  33. Eichler, C., Petta, J.R.: Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators. Phys. Rev. Lett. 120, 227702 (2018)

    Article  ADS  Google Scholar 

  34. Bothner, D., Rodrigues, I.G.: Steele.:Photon-pressure strong coupling between two superconducting circuits. Nat. Phys. 17, 1–7 (2020)

    Google Scholar 

  35. Wallquist, M., Shumeiko, V.S., Wendin, G.: Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity. Phys. Rev. B 74, 224506 (2006)

    Article  ADS  Google Scholar 

  36. Kim, E.-J., Johansson, J.R., Nori, F.: Circuit analog of quadratic optomechanics. Phys. Rev. A 91, 033835 (2015)

    Article  ADS  Google Scholar 

  37. Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir Effect in a Superconducting Coplanar Waveguide. Phys. Rev. Lett. 103, 147003 (2009)

    Article  ADS  Google Scholar 

  38. Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011)

    Article  ADS  Google Scholar 

  39. Wang, X., Miranowicz, A., Li, H.-R., Nori, F.: Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit. Phys. Rev. A 93, 063861 (2016)

    Article  ADS  Google Scholar 

  40. Huang, R., Miranowicz, A., Liao, J.-Q., Nori, F., Jing, H.: Nonreciprocal Photon Blockade. Phys. Rev. Lett. 121, 153601 (2018)

    Article  ADS  Google Scholar 

  41. Rabl, P.: Photon Blockade Effect in Optomechanical Systems. Phys. Rev. Lett. 107, 063601 (2011)

    Article  ADS  Google Scholar 

  42. Barzanjeh, S., Wulf, M., Peruzzo, M., Kalaee, M., Dieterle, P., Painter, O., Fink, J.M.: Mechanical on-chip microwave circulator. Nat. Commun. 8, 1–7 (2017)

    Article  ADS  Google Scholar 

  43. Miranowicz, A., Bajer, J.C.V., Lambert, N., Liu, Y.-X., Nori, F.: Tunable multiphonon blockade in coupled nanomechanical resonators. Phys. Rev. A 93, 013808 (2016)

    Article  ADS  Google Scholar 

  44. Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F.: Colloquium: Stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1–24 (2012)

    Article  ADS  Google Scholar 

  45. Adam, J.D., Davis, L.E., Dionne, G.F., Schloemann, E.F., Stitzer, S.N.: Ferrite devices and materials. IEEE Trans. Microw. Theory Technol. 50, 721–737 (2002)

    Article  ADS  Google Scholar 

  46. Dötsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F.: Applications of magneto-optical waveguides in integrated optics. JOSA B 22, 240–253 (2005)

    Article  ADS  Google Scholar 

  47. Fleury, R., Sounas, D.L., Sieck, C.F., Haberman, M.R., Alù, A.: Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014)

    Article  ADS  Google Scholar 

  48. Estep, N.A., Sounas, D.L., Soric, J., Alù, A.: Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10, 923–927 (2014)

    Article  Google Scholar 

  49. Wang, D.-W., Zhou, H.-T., Guo, M.-J., Zhang, J.-X., Evers, J., Jörg, S-YZhu.: Optical Diode Made from a Moving Photonic Crystal. Phys. Rev. Lett. 110, 093901 (2013)

    Article  ADS  Google Scholar 

  50. Manipatruni, S., Robinson, J.T., Lipson, M.: Optical Nonreciprocity in Optomechanical Structures. Phys. Rev. Lett. 102, 213903 (2009)

    Article  ADS  Google Scholar 

  51. Hafezi, M., Rabl, P.: Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012)

    Article  ADS  Google Scholar 

  52. Shen, Z., Zhang, Y.-L., Chen, Y., Zou, C.-L., Xiao, Y.-F., Zou, X.-B., Sun, F.-W., Guo, G.-C., Dong, C.-H.: Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10, 657–661 (2016)

    Article  ADS  Google Scholar 

  53. Ruesink, F., Miri, M.-A., Alu, A., Verhagen, E.: Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 1–8 (2016)

    Article  Google Scholar 

  54. Xu, X.-W., Li, Y.: Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A 91, 053854 (2015)

    Article  ADS  Google Scholar 

  55. Bernier, N.R., Toth, L.D., Koottandavida, A., Ioannou, M.A., Malz, D., Nunnenkamp, A., Feofanov, A., Kippenberg, T.: Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 1–8 (2017)

    Article  ADS  Google Scholar 

  56. Wang, X., Li, H.-R., Li, F.-L.: Generating synthetic magnetism via Floquet engineering auxiliary qubits in phonon-cavity-based lattice. New J. Phys. 22, 033037 (2020)

    Article  ADS  Google Scholar 

  57. Shi, Y., Yu, Z., Fan, S.: Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics 9, 388–392 (2015)

    Article  ADS  Google Scholar 

  58. Aleahmad, A.P., Khajavikhan, M., Christodoulides, D., LiKamWa, P.: Integrated multi-port circulators for unidirectional optical information transport. Sci. Rep. 7, 1–6 (2017)

    Article  Google Scholar 

  59. Sounas, D.L., Alù, A.: Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures. Phys. Rev. Lett. 118, 154302 (2017)

    Article  ADS  Google Scholar 

  60. Jiang, C., Song, L.N., Li, Y.: Directional amplifier in an optomechanical system with optical gain. Phys. Rev. A 97, 053812 (2018)

    Article  ADS  Google Scholar 

  61. Metelmann, A., Clerk, A.A.: Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015)

    Google Scholar 

  62. Wang, X., Miranowicz, A., Nori, F.: Ideal Quantum Nondemolition Readout of a Flux Qubit without Purcell Limitations. Phys. Rev. Appl. 12, 064037 (2019)

    Article  ADS  Google Scholar 

  63. Pogorzalek, S., Fedorov, K.G., Zhong, L., Goetz, J., Wulschner, F., Fischer, M., Eder, P., Xie, E., Inomata, K., Yamamoto, T., Nakamura, Y., Marx, A., Deppe, F., Gross, R.: Hysteretic flux response and nondegenerate gain of flux-driven josephson parametric amplifiers. Phys. Rev. Appl. 8, 024012 (2017)

    Article  ADS  Google Scholar 

  64. Bhupathi, P., Groszkowski, P., DeFeo, M.P., Ware, M., Wilhelm, F.K., Plourde, B.L.T.: Transient dynamics of a superconducting nonlinear oscillator. Phys. Rev. Appl. 5, 024002 (2016)

    Article  ADS  Google Scholar 

  65. DeJesus, E. X., Kaufman, C.: Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288–5290 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  66. Gradshteyn, I., Ryzhik, I., Romer, R.: Tables of integrals, series, and products. Am. J. Phys. 56, 958 (1988)

    Article  ADS  Google Scholar 

  67. Gardiner, C. W., Collett, M. J.: Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  68. Koch, J., Houck, A. A., Hur, K. L., Girvin, S. M.: Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

X.W. is supported by China Postdoctoral Science Foundation No. 2018M631136 and the National Natural Science Foundation of China (NSFC) (Grant No. 11804270 and No. 12174303). HRL is supported by the National Science Foundation of China (Grant No. 11774284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongrong Li or Xiaoli Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Li, JQ., Zhu, W. et al. Microwave photonic circulator based on optomechanical-like interactions. Quantum Inf Process 20, 306 (2021). https://doi.org/10.1007/s11128-021-03244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03244-4

Keywords