Abstract
The circulator is an important device in quantum information, which can route the input state to a designated output channel. In this work, we propose a scheme to realize a microwave photonic circulator based on optomechanical-like superconducting interactions. Our setup involves three high-frequency (HF) resonators and a low-frequency (LF) resonator. The HF resonators are coupled to the LF frequency resonator by the superconducting quantum interference device, and the HF resonators are coupled each other via linear interactions. Driving the HF resonators with three coherent fields results in synthetic magnetic fluxes, which, in combination with dissipative coupling to the LF resonator’s bath, leads to nonreciprocal transports of microwave photons. Different from circulators based on the optomechanical system, our scheme has stronger coupling and no thermal phonon noise. In the specific phase relationship, we calculate the nonreciprocal condition of the microwave photonic circulator and find that the transmission direction can be controlled by the phase differences between the driving fields. We obtain the parameters that affect the bandwidth. Moreover, we investigate the effects of imperfection. Our results provide a theoretical proposal for the realization of a high-isolation (68.4 dB) and low-dissipation microwave photonic circulator.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The data that support the findings of this study are available within the article.
References
Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R., Lucero, E., Neeley, M., Oconnell, A., Sank, D., Wenner, J., Martinis, J., Cleland, A.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546 (2009)
Vijay, R., Slichter, D.H., Siddiqi, I.: Microwave photonics with superconducting quantum circuits. Phys. Rev. Lett. 106, 110502 (2011)
Gu, X., Kockum, A.F., Miranowicz, A., Xiliu, Y., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017)
Ofek, N., Petrenko, A., Heeres, R., Reinhold, P., Leghtas, Z., Vlastakis, B., Liu, Y., Frunzio, L.L., Girvin, S., Jiang, L., Mirrahimi, M., Devoret, M., Schoelkopf, R.: Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016)
Wang, X., Liu, T., Kockum, A.F., Li, H.-R., Nori, F.: Tunable Chiral Bound States with Giant Atoms. Phys. Rev. Lett. 126, 126 (2021)
Kubo, Y., Ong, F.R., Bertet, P., Vion, D., Jacques, V., Zheng, D., Dreau, A., Roch, J.-F., Auffeves, A., Jelezko, F., Wrachtrup, J., Barthe, M.F., Bergonzo, P., Esteve, D.: Strong Coupling of a Spin Ensemble to a Superconducting Resonator. Phys. Rev. Lett. 105, 140502 (2010)
Schuster, D.I., Fragner, A., Dykman, M.I., Lyon, S.A., Schoelkopf, R.J.: Proposal for manipulating and detecting spin and orbital states of trapped electrons on helium using cavity quantum electrodynamics. Phys. Rev. Lett. 105, 040503 (2010)
Petersson, K., McFaul, L., Schroer, M., Jung, M., Taylor, J., Houck, A., Petta, J.: Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–3 (2012)
Eichler, C., Sigillito, A.J., Lyon, S.A., Petta, J.R.: Electron Spin Resonance at the Level of \(1{0}^{4}\) Spins Using Low Impedance Superconducting Resonators. Phys. Rev. Lett. 118, 037701 (2017)
Toth, L.D., Bernier, N., Nunnenkamp, A., Feofanov, A., Kippenberg, T.: A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13, 787–793 (2017)
Xiang, Z.-L., Ashhab, S., You, J., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2012)
Wallraff, A., Schuster, D., Blais, A., Frunzio, L., Huang, R., Majer, J., Kumar, S., Girvin, S., Schoelkopf, R.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)
Marquardt, F., Girvin, S.M.: Trend: optomechanics. Physics 2, 40 (2009)
Aspelmeyer, M., Kippenberg, T., Marquardt, F.: Cavity Optomechanics. Rev. Mod. Phys. 86, 1391 (2013)
Antognozzi, M., Bermingham, C., Harniman, R., Simpson, S., Senior, J., Hayward, R., Hoerber, J., Dennis, M., Bekshaev, A., Bliokh, K., Nori, F.: Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 12, 731 (2016)
Metcalfe, M.: Applications of Cavity Optomechanics. Appl. Phys. Rev. 1, 031105 (2014)
Wang X., Qin W., Miranowicz A., Savasta S., Nori F.: Unconventional cavity optomechanics: Nonlinear control of phonons in the acoustic quantum vacuum. 100 063827 (2019)
Teufel, J., Donner, T., Li, D., Harlow, J., Allman, M., Cicak, K., Sirois, A., Whittaker, J., Lehnert, K., Simmonds, R.: Sideband Cooling of Micromechanical Motion to the Quantum Ground State. Nature 475, 359–63 (2011)
Chan, J., Alegre, T.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)
Chang, Y., Shi, T., Liu, Y.-X., Sun, C.P., Nori, F.: Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities. Phys. Rev. A 83, 063826 (2011)
Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012)
Lü, X.-Y., Wu, Y., Johansson, J.R., Jing, H., Zhang, J., Nori Franco, F.: Squeezed Optomechanics with Phase-Matched Amplification and Dissipation. Phys. Rev. Lett. 114, 093602 (2015)
Lai, D.-G., Wang, X., Qin, W., Hou, B.-P., Nori, F., Liao, J.-Q.: Tunable optomechanically induced transparency by controlling the dark-mode effect. Phys. Rev. A 102, 023707 (2020)
Rosenberg, J., Lin, Q., Painter, O.: Static and dynamic wavelength routing via the gradient optical force. Nat. Photonics 3, 478–483 (2009)
Fang, K., Luo, J., Metelmann, A., Matheny, M.H., Marquardt, F., Clerk, A.A., Painter, O.: Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017)
Tian, L., Li, Z.: Nonreciprocal quantum-state conversion between microwave and optical photons. Phys. Rev. A 96, 013808 (2017)
Wang, Y.-D., Clerk, A.A.: Using Interference for High Fidelity Quantum State Transfer in Optomechanics. Phys. Rev. Lett. 108, 153603 (2012)
Tian, L.: Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems. Phys. Rev. Lett. 108, 153604 (2012)
Dong, Chunhua and Fiore, Victor and Kuzyk, Mark C, Wang, Hailin (2012) Optomechanical dark mode Science 338, 1609–1613
Richer, S., DiVincenzo, D.: Circuit design implementing longitudinal coupling: A scalable scheme for superconducting qubits. Phys. Rev. B 93, 134501 (2016)
Billangeon, P.-M., Tsai, J.S., Nakamura, Y.: Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits. Phys. Rev. B 91, 094517 (2015)
Johansson, J.R., Johansson, G., Nori, F.: Optomechanical-like coupling between superconducting resonators. Phys. Rev. A 90, 053833 (2014)
Eichler, C., Petta, J.R.: Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators. Phys. Rev. Lett. 120, 227702 (2018)
Bothner, D., Rodrigues, I.G.: Steele.:Photon-pressure strong coupling between two superconducting circuits. Nat. Phys. 17, 1–7 (2020)
Wallquist, M., Shumeiko, V.S., Wendin, G.: Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity. Phys. Rev. B 74, 224506 (2006)
Kim, E.-J., Johansson, J.R., Nori, F.: Circuit analog of quadratic optomechanics. Phys. Rev. A 91, 033835 (2015)
Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir Effect in a Superconducting Coplanar Waveguide. Phys. Rev. Lett. 103, 147003 (2009)
Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011)
Wang, X., Miranowicz, A., Li, H.-R., Nori, F.: Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit. Phys. Rev. A 93, 063861 (2016)
Huang, R., Miranowicz, A., Liao, J.-Q., Nori, F., Jing, H.: Nonreciprocal Photon Blockade. Phys. Rev. Lett. 121, 153601 (2018)
Rabl, P.: Photon Blockade Effect in Optomechanical Systems. Phys. Rev. Lett. 107, 063601 (2011)
Barzanjeh, S., Wulf, M., Peruzzo, M., Kalaee, M., Dieterle, P., Painter, O., Fink, J.M.: Mechanical on-chip microwave circulator. Nat. Commun. 8, 1–7 (2017)
Miranowicz, A., Bajer, J.C.V., Lambert, N., Liu, Y.-X., Nori, F.: Tunable multiphonon blockade in coupled nanomechanical resonators. Phys. Rev. A 93, 013808 (2016)
Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F.: Colloquium: Stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1–24 (2012)
Adam, J.D., Davis, L.E., Dionne, G.F., Schloemann, E.F., Stitzer, S.N.: Ferrite devices and materials. IEEE Trans. Microw. Theory Technol. 50, 721–737 (2002)
Dötsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F.: Applications of magneto-optical waveguides in integrated optics. JOSA B 22, 240–253 (2005)
Fleury, R., Sounas, D.L., Sieck, C.F., Haberman, M.R., Alù, A.: Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014)
Estep, N.A., Sounas, D.L., Soric, J., Alù, A.: Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10, 923–927 (2014)
Wang, D.-W., Zhou, H.-T., Guo, M.-J., Zhang, J.-X., Evers, J., Jörg, S-YZhu.: Optical Diode Made from a Moving Photonic Crystal. Phys. Rev. Lett. 110, 093901 (2013)
Manipatruni, S., Robinson, J.T., Lipson, M.: Optical Nonreciprocity in Optomechanical Structures. Phys. Rev. Lett. 102, 213903 (2009)
Hafezi, M., Rabl, P.: Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012)
Shen, Z., Zhang, Y.-L., Chen, Y., Zou, C.-L., Xiao, Y.-F., Zou, X.-B., Sun, F.-W., Guo, G.-C., Dong, C.-H.: Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10, 657–661 (2016)
Ruesink, F., Miri, M.-A., Alu, A., Verhagen, E.: Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 1–8 (2016)
Xu, X.-W., Li, Y.: Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A 91, 053854 (2015)
Bernier, N.R., Toth, L.D., Koottandavida, A., Ioannou, M.A., Malz, D., Nunnenkamp, A., Feofanov, A., Kippenberg, T.: Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 1–8 (2017)
Wang, X., Li, H.-R., Li, F.-L.: Generating synthetic magnetism via Floquet engineering auxiliary qubits in phonon-cavity-based lattice. New J. Phys. 22, 033037 (2020)
Shi, Y., Yu, Z., Fan, S.: Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics 9, 388–392 (2015)
Aleahmad, A.P., Khajavikhan, M., Christodoulides, D., LiKamWa, P.: Integrated multi-port circulators for unidirectional optical information transport. Sci. Rep. 7, 1–6 (2017)
Sounas, D.L., Alù, A.: Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures. Phys. Rev. Lett. 118, 154302 (2017)
Jiang, C., Song, L.N., Li, Y.: Directional amplifier in an optomechanical system with optical gain. Phys. Rev. A 97, 053812 (2018)
Metelmann, A., Clerk, A.A.: Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015)
Wang, X., Miranowicz, A., Nori, F.: Ideal Quantum Nondemolition Readout of a Flux Qubit without Purcell Limitations. Phys. Rev. Appl. 12, 064037 (2019)
Pogorzalek, S., Fedorov, K.G., Zhong, L., Goetz, J., Wulschner, F., Fischer, M., Eder, P., Xie, E., Inomata, K., Yamamoto, T., Nakamura, Y., Marx, A., Deppe, F., Gross, R.: Hysteretic flux response and nondegenerate gain of flux-driven josephson parametric amplifiers. Phys. Rev. Appl. 8, 024012 (2017)
Bhupathi, P., Groszkowski, P., DeFeo, M.P., Ware, M., Wilhelm, F.K., Plourde, B.L.T.: Transient dynamics of a superconducting nonlinear oscillator. Phys. Rev. Appl. 5, 024002 (2016)
DeJesus, E. X., Kaufman, C.: Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288–5290 (1987)
Gradshteyn, I., Ryzhik, I., Romer, R.: Tables of integrals, series, and products. Am. J. Phys. 56, 958 (1988)
Gardiner, C. W., Collett, M. J.: Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985)
Koch, J., Houck, A. A., Hur, K. L., Girvin, S. M.: Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010)
Acknowledgements
X.W. is supported by China Postdoctoral Science Foundation No. 2018M631136 and the National Natural Science Foundation of China (NSFC) (Grant No. 11804270 and No. 12174303). HRL is supported by the National Science Foundation of China (Grant No. 11774284).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chang, Y., Li, JQ., Zhu, W. et al. Microwave photonic circulator based on optomechanical-like interactions. Quantum Inf Process 20, 306 (2021). https://doi.org/10.1007/s11128-021-03244-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03244-4