Skip to main content
Log in

Genuine tripartite entanglement in the dynamical Casimir coupled waveguides

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the quantum entanglement generated by the dynamical Casimir array composed of three superconducting waveguides (SWs). By analyzing the input–output relation, we derive the genuine entanglement witness which can be used in the tripartite system. Using the genuine entanglement criterion, the effects of the coupling coefficient, amplitude and temperature of each stripline waveguide on the genuine tripartite entanglement are discussed. It shows that the large coupling strength of the first intra-SW and high temperature leads to the faster degradation of genuine tripartite entanglement. We also obtain the result that the witness has the lowest value and the sensitivity of the genuine tripartite entanglement is the lowest when the amplitude proportional coefficient is selected properly. Moreover, the parameter range for realizing the lowest sensitivity of the genuine tripartite entanglement is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dodonov, V.V.: Current status of the dynamical Casimir effect. Phys. Scr. 82, 038105 (2010)

    Article  ADS  Google Scholar 

  2. Uhlmann, M., Plunien, G., Schützhold, R., Soff, G.: Resonant cavity photon creation via the dynamical casimir effect. Phys. Rev. Lett. 93, 193601 (2004)

    Article  ADS  Google Scholar 

  3. Dalvit, D.A.R., Neto, P.A.M., Mazzitelli, F.D.: Fluctuations, dissipation and the dynamical Casimir effect. Lect. Notes Phys. 834, 419 (2011)

    Article  ADS  Google Scholar 

  4. Johansson, J.R., Johansson, G., Wilson, C.M., Delsing, P., Nori, F.: Nonclassical microwave radiation from the dynamical Casimir effect. Phys. Rev. A 87, 043804 (2013)

    Article  ADS  Google Scholar 

  5. Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376 (2011)

    Article  ADS  Google Scholar 

  6. Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F.: Colloquium: stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1 (2012)

    Article  ADS  Google Scholar 

  7. Rego, A.L.C., Silva, H.O., Alves, D.T., Farina, C.: New signatures of the dynamical Casimir effect in a superconducting circuit. Phys. Rev. D 90, 025003 (2014)

    Article  ADS  Google Scholar 

  8. Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I.: Dynamical Casimir effect in a double tunable superconducting circuit. Phys. Rev. A 93, 032501 (2016)

    Article  ADS  Google Scholar 

  9. Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I.: Dynamical Casimir effect in superconducting circuits: a numerical approach. Phys. Rev. A 98, 022513 (2018)

    Article  ADS  Google Scholar 

  10. Cheng, G., Tan, H., Chen, A.: Disspation induced asymmetric steering of distant atomic ensembles. Opt. Commun. 421, 166–171 (2018)

    Article  ADS  Google Scholar 

  11. Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Garcia-Ripoll, J.J., Zueco, D., Hümmer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electro-dynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010)

    Article  Google Scholar 

  12. Peropadre, G., Lindkvist, J., Hoi, I.-C., Wilson, C., Garcia-Ripoll, J.J., Delsing, P., Johansson, G.: Scattering of coherent states on a single artifical atom. New J. Phys. 15, 035009 (2013)

    Article  ADS  Google Scholar 

  13. Stassi, R., Liberato, S.D., Garziano, L., Spagnolo, B., Spagnolo, S.: Quantum control and long-range quantum correlations in dynamical Casimir arrays. Phys. Rev. A 92, 013830 (2015)

    Article  ADS  Google Scholar 

  14. Wilson, C.M., Duty, T., Sandberg, M., Persson, F., Shumeiko, V., Delsing, P.: Photon generation in an electromagnetic cavity with a time-dependent. Phys. Rev. Lett. 105, 233907 (2010)

    Article  ADS  Google Scholar 

  15. Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)

    Article  ADS  Google Scholar 

  16. Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Csaimir effect in superconducting microwave circuits. Phys. Rev. A 82, 052509 (2010)

    Article  ADS  Google Scholar 

  17. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  18. Sabín, C., Fuentes, I., Johansson, G.: Quantum discord in the dynamical Casimir effect. Phys. Rev. A. 92, 012314 (2015)

    Article  ADS  Google Scholar 

  19. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  20. He, Q.Y., Gong, Q.H., Reid, M.D.: Classifying directional Gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord. Phys. Rev. Lett. 114, 060402 (2015)

    Article  ADS  Google Scholar 

  21. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein-Podolsky-Rosen correlations, bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Rosales-Zárate, L., Teh, R.Y., Kiesewetter, S., Brolis, A., Ng, K., Reid, M.D.: Decoherence of Einstein-Podolsky-Rosen steering. J. Opt. Soc. Am. B 32, A82 (2015)

    Article  ADS  Google Scholar 

  24. Agustí, A., Solano, E., Sabín, C.: Entanglement through qubit motion and the dynamical Casimir effect. Phys. Rev. A 99, 052328 (2019)

    Article  ADS  Google Scholar 

  25. Scheel, S., Welsch, D.G.: Entanglement generation and degradation by passive optical devices. Phys. Rev. A 64, 063811 (2001)

    Article  ADS  Google Scholar 

  26. Wilson, D., Lee, J., Kim, M.S.: Entanglement of a two-mode squeezed state in a phase-sensitive gaussian environment. J. Mod. Optics. 50, 1809 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. Bowen, W.P., Schnabel, R., Lam, P.K., Ralph, T.C.: Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003)

    Article  ADS  Google Scholar 

  28. van Loock, P., Furusawa, A.: Detecting genuine multipartite Continuous-variable Entanglement. Phys. Rev. A. 67, 052315 (2003)

    Article  ADS  Google Scholar 

  29. Shi, J.D., Wang, D., Ye, L.: Genuine multipartite entanglement as the indicator of quantum phase transition in spin systems. Quantum Inf. Process. 15, 4629–4640 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wang, T.T., Shi, J.D.: Multipartite entanglement and quantum phase transitions in the XXZ model with Dzyaloshinskii-Moriya interaction. Laser Phys. Lett. 16, 065201 (2019)

    Article  ADS  Google Scholar 

  31. Pirandola, S., Mancini, S.: Quantum teleportation with continuous variables: A survey. Laser Phys. 16, 1418 (2006)

    Article  ADS  Google Scholar 

  32. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012)

    Article  ADS  Google Scholar 

  33. Zhang, X., Liu, H., Wang, Z.H., Zheng, T.Y.: Asymmetric quantum correlations in the dynamical Casimir effect. Sci. Reports 9, 1 (2019)

    ADS  Google Scholar 

  34. Long, Y.M., Zhang, X., Liu, H., Zheng, T.Y.: Decoherence of Einstein-Podolsky-Rosen steering and the teleportation fidelity in the dynamical Casimir effect. Quantum Inf. Process. 19, 322 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. Shalm, L.K., Hamel, D.R., Yan, Z., Simon, C., Resch, K.J., Jennewein, T.: Three-photon energy-time entanglement. Nat. Phys. 9, 19 (2013)

    Article  Google Scholar 

  36. Aoki, T., Takei, N., Yonezawa, H., Wakui, K., Hiraoka, T., Furusawa, A., van Loock, P.: Experimental creation of a fully inseparable tripartite continuous-variable state. Phys. Rev. Lett. 91, 080404 (2003)

    Article  ADS  Google Scholar 

Download references

Funding

Natural National Science Foundation of China (NSFC) (11175044, 11347190).

Author information

Authors and Affiliations

Authors

Contributions

SZ conceived the idea and performed the calculations with the aid of XZ SZ, YL, MZ, TZ, and XZ performed the analyses, SZ wrote the manuscript with the input of XZ. All authors contributed to the paper.

Corresponding author

Correspondence to Xue Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Long, Y., Zhang, M. et al. Genuine tripartite entanglement in the dynamical Casimir coupled waveguides. Quantum Inf Process 20, 308 (2021). https://doi.org/10.1007/s11128-021-03247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03247-1

Keywords

Navigation