Skip to main content

Advertisement

Log in

Partial orbits of quantum gates and full three-particle entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We introduce the notion of partial orbit for a given set of elementary quantum gates, and we study the action of different sets of gates on an initially three-particle disentangled state. We analyze the entanglement of the resulting quantum states by appealing to the violation of Svetlichny inequality. We find that the violation values are concentrated on specific regions. This constitutes evidence for the existence of a structure, which is quite different from that of a randomly generated (using the Haar measure) set of gates. In turn, this fact highlights the relevance of studying the physical properties of the partial orbits associated with different sets of elementary gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Montanaro, A.: Quantum algorithms: an overview. npj Quant. Inf 2(1), 15023 (2016)

    Article  ADS  Google Scholar 

  2. Holik, F., Sergioli, G., Freytes, H., Plastino, A.: Logical structures underlying quantum computing. Entropy 21(1), 77 (2019)

  3. Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. 114(13), 3305–3310 (2017)

    Article  Google Scholar 

  4. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  6. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a bell-type inequality. Phys. Rev. D 35, 3066–3069 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. Swain, M., Rai, A., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of the violations of mermin’s and svetlichny’s inequalities for w and ghz states. Quant. Inf. Process. 18(7), 218 (2019)

    Article  ADS  Google Scholar 

  8. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  9. Kitaev, A.Y.: Quantum computations: algorithms and error correction. Rus. Math. Surv. 52(6), 1191–1249 (1997)

    Article  MathSciNet  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: The Solovay-Kitaev theorem, pp. 617–624. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  11. Vartiainen, J.J., Möttönen, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92, 177902 (2004)

    Article  ADS  Google Scholar 

  12. Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93, 130502 (2004)

    Article  ADS  Google Scholar 

  13. Werner, R.F.: Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989)

    Article  ADS  Google Scholar 

  14. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. Huang, W.J., Chien, W.C., Cho, C.H., Huang, C.C., Huang, T.W., Chang, C.R.: Mermin’s inequalities of multiple qubits with orthogonal measurements on ibm q 53-qubit system. Quant. Eng. 2(2), e45 (2020)

    Google Scholar 

  17. Ajoy, A., Rungta, P.: Svetlichny’s inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 81, 052334 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wang, K., Zheng, Z.J.: Violation of svetlichny inequality in triple jaynes-cummings models. Sci. Rep. 10(1), 6621 (2020)

    Article  ADS  Google Scholar 

  19. Lavoie, J., Kaltenbaek, R., Resch, K.J.: Experimental violation of svetlichny’s inequality. New J. Phys. 11(7), 073051 (2009)

    Article  ADS  Google Scholar 

  20. Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in n-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. Caban, P., Molenda, A., Trzcińska, K.: Activation of the violation of the svetlichny inequality. Phys. Rev. A 92, 032119 (2015)

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by 1) MIUR, project PRIN 2017: “Theory and applications of resource sensitive logics” (code: 20173WKCM5). 2) MIUR project PRIN 2017: “Logic and Cognition: theory, experiments, applications” (code: 20173YP4N3). 3) RAS (Regione Autonoma della Sardegna) 2018: “Per un’estensione semantica della Logica Computazionale Quantistica-Impatto teorica e ricadute implementative” (code: RASSR40341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Holik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

In order to study the violation of the Svetlichny inequality, we consider three particles \(a, \, b, \, c\) and two possible measurements for each particle. For particle a, we consider the measurements \(A = \vec {\alpha }\cdot \vec {\sigma }\) and \(A' = \vec {\alpha '}\cdot \vec {\sigma }\); for particle b, the measurements \(B = \vec {\beta }\cdot \vec {\sigma }\) and \(B'= \vec {\beta '}\cdot \vec {\sigma }\); and for particle c, the measurements \(C = \vec {\gamma }\cdot \vec {\sigma }\) and \(C' = \vec {\gamma '}\cdot \vec {\sigma }\). The Svetlichny inequality of a state \(\rho \) can be expressed in terms of the Svetlichny function \({\mathcal {S}}(\rho ,\vec {\alpha },\vec {\alpha }',\vec {\beta },\vec {\beta }',\vec {\gamma },\vec {\gamma }')\) as follows

$$\begin{aligned} {\mathcal {S}}(\rho ,\vec {\alpha },\vec {\alpha }',\vec {\beta },\vec {\beta }',\vec {\gamma },\vec {\gamma }') = |\text{ tr }(\rho S)| \le 4, \end{aligned}$$
(6)

where S is the Svetlichny operator defined as follows:

$$\begin{aligned} S= & {} A\otimes B\otimes C + A\otimes B'\otimes C + A\otimes B \otimes C' - A\otimes B'\otimes C' + A'\otimes B \otimes C \nonumber \\&-A'\otimes B'\otimes C - A'\otimes B\otimes C' - A'\otimes B'\otimes C'. \end{aligned}$$
(7)

By parameterizing the unit norm vectors \(\vec {\alpha }, \, \vec {\alpha '}, \, \vec {\beta }, \,\vec {\beta '}, \, \vec {\gamma }, \, \vec {\gamma '}\) with spherical coordinates, the dependence of the local observables A, B, and C with respect to the angles is given by:

$$\begin{aligned} A(\theta _a,\phi _a)&=\cos \theta _a \sin \phi _a \, \sigma _{x} + \sin \theta _a \sin \phi _a \, \sigma _{y} + \cos \phi _a \, \sigma _{z}, \end{aligned}$$
(8)
$$\begin{aligned} B(\theta _b,\phi _b)&= \cos \theta _b \sin \phi _b \, \sigma _{x} + \sin \theta _b \sin \phi _b \, \sigma _{y} + \cos \phi _b \, \sigma _{z}, \end{aligned}$$
(9)
$$\begin{aligned} C(\theta _c,\phi _c)&= \cos \theta _c \sin \phi _c \, \sigma _{x} + \sin \theta _c \sin \phi _c \, \sigma _{y} + \cos \phi _c \, \sigma _{z}, \end{aligned}$$
(10)

with similar equations for the primed coordinates. For each state \(\rho \), obtained by applying the elementary gates to the initial sate \(\rho _{0}\), we find the combination of angles that maximizes the Svetlichny function \({\mathcal {S}}(\rho ,\vec {\alpha },\vec {\alpha }',\vec {\beta },\vec {\beta }',\vec {\gamma },\vec {\gamma }')\), i.e., the combination that maximizes the violation of the inequality (6). The maximum value obtained is called Svetlichny maximum value. In this way, we quantify how much entanglement is obtained after the application of a sequence of elementary gates. The Svetlichny maximum values of the states of the partial orbits are used to build the histograms displayed in Section 4.

Appendix

In Fig. 4, we show similar calculations to those of Sect. 4, but starting with a three-qubit GHZ state, i.e., an initially entangled state.

Fig. 4
figure 4

Histograms in logarithmic scale of the maximum values of the Svetlichny function for partial orbits of different degrees, associated with an initial GHZ state. a Clifford set, degree 7; b Clifford set, degree 6 with noise parameter \(=0.2\); c Clifford set, degree 6 with noise parameter \(=0.05\); d Cnot + Toff set, degree 7; e Cnot + Toff set, degree 6 with noise parameter \(=0.2\); f Cnot + Toff set, degree 6 with noise parameter \(=0.05\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holik, F., Losada, M., Freytes, H. et al. Partial orbits of quantum gates and full three-particle entanglement. Quantum Inf Process 20, 351 (2021). https://doi.org/10.1007/s11128-021-03261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03261-3

Keywords