Abstract
We investigate the entanglement and nonlocality dynamics of a two-qubit Bell state and the three-qubit Greenberger–Home–Zeilinger (GHZ) state in a noisy environment by solving analytically a master equation in the Lindblad form. In the case of the Bell state, we obtain the analytic expressions of the concurrence and the maximal violation of the Clauser–Horne–Shimony–Holt inequality of the evolution state. In the case of the three-qubit GHZ state, we obtain the analytic formula of the genuinely multipartite concurrence of the evolution state. Usually, it is difficult to give the analytic expression of the maximum violation of the Svetlichny inequality for a general three-qubit state, but we find the analytic expression for a class of three-qubit states whose correlation matrices are of a special form. We use this result to obtain the analytic expression of the maximum violation of the Svetlichny inequality of the evolution state when parameters in the master equation meet certain conditions.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Horodecki, R., Horodecki, P., Horodecki, M., et al.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Buhrman, H., Cleve, R., Massar, S., et al.: Non-locality and communication complexity. Rev. Mod. Phys. 82(1), 665–698 (2009)
Bardyn, C.E., Liew, T., Massar, S., et al.: Device-independent state estimation based on Bell’s inequalities. Phys. Rev. A 80(6), 062327 (2009)
Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989)
Brunner, N., Cavalcanti, D., Pironio, S., et al.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419–478 (2014)
Gühne, O., Toth, G.: Entanglement detection. Phys. Rep. 474(1–6), 1–75 (2009)
Harshman, N.L., Flynn, W.F.: Entanglement in massive coupled oscillators. Quantum Inf. Comput. 11(3), 278–299 (2010)
Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93(14), 140404 (2004)
Lopez, C.E., Romero, G., Lastra, F., et al.: Sudden Birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett. 101(8), 080503 (2008)
Yang, Q., Yang, M., Cao, Z.L.: Cavity-loss-induced Bell-nonlocality sudden death in the Tavis–Cummings model. Phys. Lett. A 372(46), 6843–6846 (2008)
Batle, J.: Nonlocality and entanglement in the XY model. Phys. Rev. A 82(6), 2212–2215 (2010)
Zhen, X.L., Yang, Q., Yang, M., et al.: Bell-nonlocality dynamics of three remote atoms in Tavis–Cummings and Jaynes–Cummings models. Commun. Theor. Phys. 62, 795 (2014)
Aolita, L., Melo, F.D., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78(4), 042001 (2015)
Jaeger, G., Ann, K.: Local basis-dependent noise-induced Bell-nonlocality sudden death in tripartite systems. Phys. Rev. A 372(13), 2212–2216 (2008)
Qiu, L.: Nonlocality sudden birth and transfer in system and environment. Chin. Phys. Lett. 28(3), 030301 (2011)
Lendi, K.: Selected aspects of Markovian and non-Markovian quantum master equations. Lect. Notes Phys. 622, 31–46 (2003)
Laskowski, W., Paterek, T., Brukner, C., et al.: Entanglement and communication-reducing properties of noisy N-qubit states. Phys. Rev. A 81(4), 042101 (2009)
Chaves, R., Cavalcanti, D., Aolita, L., et al.: Multipartite quantum nonlocality under local decoherence. Phys. Rev. A 86(1), 17258–17270 (2012)
Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66(2), 022316 (2002)
Jung, E., Hwang, M.R., Ju, Y.H., et al.: Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)
Su, Z., Li, L., Ling, J.: An approach for quantitatively analyzing the genuine tripartite nonlocality of general three-qubit states. Quantum Inf. Process. 17(4), 85 (2018)
Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7(1), 1–51 (2005)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Found. Phys. Lett. 14(10), 199–212 (1997)
Ma, Z.H., Chen, Z.H., Chen, J.L., et al.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83(6), 35–40 (2011)
Mazzola, L., Bellomo, B., Franco, R.L., et al.: Connection among entanglement, mixedness and nonlocality in a dynamical context. Phys. Rev. A 81(81), 052116 (2010)
Wang, K., Zheng, Z.J.: Violation of Svetlichny inequality in triple Jaynes–Cummings models. Sci. Rep. 10(1), 1–10 (2020)
Rafsanjani, S., Huber, M., Broadbent, C.J., et al.: Genuinely multipartite concurrence of N-qubit X-matrices. Phys. Rev. A 86(6), 11987–11987 (2012)
Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-12 states: necessary and sufficient condition. Phys. Lett. A 200(5), 340–344 (1995)
Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35(10), 3066–3069 (1987)
Derkacz, L., Lech, J.: Clauser–Horne–Shimony–Holt violation and the entropy-concurrence plane. Phys. Rev. A 72(4), 42321 (2005)
Ghose, S., Sinclair, N., Debnath, S., et al.: Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. Lett. 102(25), 250404 (2009)
Paul, B., Mukherjee, K., Sarkar, D.: Nonlocality of three-qubit Greenberger–Horne–Zeilinger-symmetric states. Phys. Rev. A 94(3), 032101 (2016)
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)
Alicki, R.: General theory and applications to unstable particles. Lect. Notes Phys. 717, 1–46 (2007)
Singh, H., Dorai, K.: Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling. Phys. Rev. A 97, 022302 (2018)
Men, Q.T., Jiang, L.Z.: Separability of evolving W state in a noise environment. Commun. Theor. Phys. 73(4), 045101 (2021)
Acknowledgements
This work is supported by Key Research and Development Project of Guang dong Province under Grant No. 2020B0303300001 and the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515310016. We appreciate Chang-Yue Zhang for her useful discussion.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, YQ., Shu, H. & Zheng, ZJ. Entanglement and nonlocality dynamics of a Bell state and the GHZ state in a noisy environment. Quantum Inf Process 20, 323 (2021). https://doi.org/10.1007/s11128-021-03263-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03263-1