Abstract
We investigate the two-spin coherence and its distribution in an extended Ising model with topological characterization. Some interesting discrepancies among the basis-dependent coherences under the different bases are found with the help of the three-spin interaction and magnetic field. The basis-independent coherence and its distribution (the collective and localized coherence) for the spin-pairs with different site distances are studied. We find that the collective coherence possesses the long-range property due to the contribution of classical correlation. We demonstrate that the first-order derivatives of the two-spin coherences can correctly characterize all of the topological quantum phase transitions regardless of the basis transformations, the site distances, or the types of coherence.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Vedral, V.: Introduction to Quantum Information Science. Oxford University Press, Oxford (2007)
Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)
Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)
Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)
Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)
Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)
Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Manǎl, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007)
Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)
Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)
Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., van Grondelle, R.: Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 677 (2014)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)
Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)
Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)
Yadin, B., Vedral, V.: General framework for quantum macroscopicity in terms of coherence. Phys. Rev. A 93, 022122 (2016)
Pozzobom, M.B., Maziero, J.: Environment-induced quantum coherence spreading of a qubit. Ann. Phys. 377, 243 (2017)
Wu, W., Xu, J.B.: Quantum coherence of spin-boson model at finite temperature. Ann. Phys. 377, 48 (2017)
Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)
Yuan, X., Zhou, H.Y., Cao, Z., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303(R) (2016)
Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)
Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016)
Li, S.P., Sun, Z.H.: Local and intrinsic quantum coherence in critical systems. Phys. Rev. A 98, 022317 (2018)
Radhakrishnan, C., Ding, Z., Shi, F.Z., Du, J.F., Byrnes, T.: Basis-independent quantum coherence and its distribution. Ann. Phys. 409, 167906 (2019)
Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)
Shi, H.L., Liu, S.Y., Wang, X.H., Yang, W.L., Yang, Z.Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)
Karpat, G., Cakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)
Cheng, W.W., Du, Z.Z., Gong, L.Y., Zhao, S.M., Liu, J.M.: Signature of topological quantum phase transitions via Wigner–Yanase skew information. Europhys. Lett. 108, 46003 (2014)
Cakmak, B., Karpat, G., Fanchini, F.F.: Factorization and criticality in the anisotropic XY chain via correlations. Entropy 17, 790 (2015)
Cheng, W.W., Li, J.X., Shan, C.J., Gong, L.Y., Zhao, S.M.: Criticality, factorization and Wigner–Yanase skew information in quantum spin chains. Quantum Inf. Process. 14, 2535 (2015)
Malvezzi, A.L., Karpat, G., Cakmak, B., Fanchini, F.F., Debarba, T., Vianna, R.O.: Quantum correlations and coherence in spin-1 Heisenberg chains. Phys. Rev. B 93, 184428 (2016)
Li, Y.C., Lin, H.Q.: Quantum coherence and quantum phase transitions. Sci. Rep. 6, 26365 (2016)
Lei, S.G., Tong, P.Q.: Wigner–Yanase skew information and quantum phase transition in one-dimensional quantum spin-1/2 chains. Quantum Inf. Process. 15, 1811 (2016)
Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A 96, 012341 (2017)
Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Quantum coherence of the Heisenberg spin models with Dzyaloshinsky–Moriya interactions. Sci. Rep. 7, 13865 (2017)
Sha, Y.T., Wang, Y., Sun, Z.H., Hou, X.W.: Thermal quantum coherence and correlation in the extended XY spin chain. Ann. Phys. 392, 229–241 (2018)
Yin, S.Y., Song, J., Xu, X.X., Zhang, Y.J., Liu, S.T.: Quantum coherence dynamics of three-qubit states in XY spin-chain environment. Quantum Inf. Process. 17, 296 (2018)
Hu, M.L., Gao, Y.Y., Fan, H.: Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. A 101, 032305 (2020)
Yin, S.Y., Song, J., Liu, S.T., Song, G.L.: Quantum coherence and topological quantum phase transitions in the extended XY chain. Phys. Lett. A 389, 127089 (2021)
Liu, B.Q., Shao, B., Li, J.G., Zou, J., Wu, L.A.: Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii–Moriya interaction. Phys. Rev. A 83, 052112 (2011)
Ye, B.L., Li, B., Wang, Z.X., Li-Jost, X.Q., Fei, S.M.: Quantum Fisher information and coherence in one-dimensional XY spin models with Dzyaloshinsky–Moriya interactions. Sci. China Phys. Mech. Astron. 61, 110312 (2018)
Yi, T.C., You, W.L., Wu, N., Oles, A.M.: Criticality and factorization in the Heisenberg chain with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 100, 024423 (2019)
Wang, C.X., Chen, L., Han, R.S., Zhang, Y.Q.: Quantum steering and quantum coherence in XY model with Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 19, 330 (2020)
Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)
Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)
Hu, M.L., Shen, S.Q., Fan, H.: Maximum coherence in the optimal basis. Phys. Rev. A 96, 052309 (2017)
Luo, S.L., Sun, Y.: Quantum coherence versus quantum uncertainty. Phys. Rev. A 96, 022130 (2017)
Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)
Yao, Y., Dong, G.H., Xiao, X., Sun, C.P.: Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 6, 32010 (2016)
Zhang, J., Yang, S.R., Zhang, Y., Yu, C.S.: The classical correlation limits the ability of the measurement-induced average coherence. Sci. Rep. 7, 45598 (2017)
Radhakrishnan, C., lü, Z.G., Jing, J., Byrnes, T.: Dynamics of quantum coherence in a spin-star system: bipartite initial state and coherence distribution. Phys. Rev. A 100, 042333 (2019)
Cao, H., Radhakrishnan, C., Su, M., Ali, M.M., Zhang, C., Huang, Y.F., Byrnes, T., Li, C.F., Guo, G.C.: Fragility of quantum correlations and coherence in a multipartite photonic system. Phys. Rev. A 102, 012403 (2020)
Qin, M.: Renormalization of quantum coherence and quantum phase transition in the Ising model. Physica A 561, 125176 (2021)
Zeng, B., Chen, X., Zhou, D.L., Wen, X.G.: Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phases of Many-Body Systems. Springer, New York (2019)
Theurer, T., Egloff, D., Zhang, L., Martin, B.P.: Quantifying operations with an application to coherence. Phys. Rev. Lett. 122, 190405 (2019)
Oszmaniec, M., Biswas, T.: Operational relevance of resource theories of quantum measurements. Quantum 3, 133 (2019)
Baek, K., Sohbi, A., Lee, J., Kim, J., Nha, H.: Quantifying coherence of quantum measurements. New J. Phys. 22, 093019 (2019)
Zhang, G., Song, Z.: Topological characterization of extended quantum Ising models. Phys. Rev. Lett. 115, 177204 (2015)
Yin, S.Y., Song, J., Zhang, Y.J., Liu, S.T.: Quantum Fisher information in quantum critical systems with topological characterization. Phys. Rev. B 100, 184417 (2019)
Zhang, Y.R., Zeng, Y., Fan, H., You, J.Q., Nori, F.: Characterization of topological states via dual multipartite entanglement. Phys. Rev. Lett. 120, 250501 (2018)
Wang, Y.K., Zhang, Y.R., Fan, H.: One-way deficit and quantum phase transitions in XY model and extended Ising model. Quantum Inf. Process. 18, 19 (2019)
Zhang, X.Z., Guo, J.L.: Quantum correlation and quantum phase transition in the one-dimensional extended Ising model. Quantum Inf. Process. 16, 223 (2017)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under the Grant Nos. 61575055, 11874132, and 11675046. We thank Dr. Biao-Liang Ye for helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix: TQPTs driven by the magnetic field
Appendix: TQPTs driven by the magnetic field
In this Appendix, by means of the energy spectra of the ground state, winding parameter, and characteristic equations, we analyze the topological characterization of the extended Ising model as the magnetic field is the driving parameter. Then, we consider the parameters of the extended Ising model as \(N=201\), \(\gamma =1\), \(\delta = 1\), and \(\alpha =1.5\). The critical points of TQPTs can be derived from the characteristic equation \(1.5\xi ^2 + \xi -\lambda = 0\), where \(\xi = \exp \left( \frac{i2\pi k}{N}\right) \) and \(|\xi | = 1\), and it can be numerically verified that \(\lambda _{c1}=-1.5\), \(\lambda _{c2}=0.5\), and \(\lambda _{c3}=2.5\) satisfy the characteristic equation [28, 64,65,66]. The energy spectra as a function of \(\lambda \) are shown in Fig. 6a, which also manifest the locations of the critical point again. Moreover, the trajectories of winding vectors are plotted in Fig. 6b with \(\lambda =-2, -1, 2\), and 3. The winding numbers can be obtained in the auxiliary \(y-z\) plane according to Eq. (17), and it changes from 0 to 2 at \(\lambda _{c1}=-1.5\), from 2 to 1 at \(\lambda _{c2}=0.5\), and from 1 to 0 at \(\lambda _{c3}=2.5\).
Rights and permissions
About this article
Cite this article
Yin, S., Song, J., Wang, Y. et al. Quantum coherence and its distribution in the extended Ising chain. Quantum Inf Process 20, 326 (2021). https://doi.org/10.1007/s11128-021-03266-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03266-y