Skip to main content

Advertisement

Log in

General quantum secret sharing scheme based on two qudit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secret sharing plays an important role in quantum cryptography. In this paper, we propose a new general quantum secret sharing scheme based on access structure and monotone span program. In our scheme, the secret distributor first distributes the secret share according to the access structure, and then each participant in the authorization set hides their secret share in the qubits, and then transmits each qubit safely performed on unitary transformation. Compared with the existing quantum secret sharing schemes, our scheme is more flexible, general and less computational cost in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Blakley, G.: Safeguarding cryptographic keys. Proc. AFIPS Natl. Comput. Conf. 48, 313–317 (1979)

    Google Scholar 

  3. Ma, H., Wei, K., Yang, J.: Experimental single qubit quantum secret sharing in a fiber network configuration. Opt. Lett. 38, 4494–4497 (2013)

    Article  ADS  Google Scholar 

  4. Choi, I., Zhou, Y., James, F., et al.: Field trial of a quantum secured 10Gb/s DWDM transmission system over a single installed fiber. Opt. Express 22, 23121–23128 (2014)

    Article  ADS  Google Scholar 

  5. Yang, X., Wei, K., Ma, H., et al.: Detector-device-independent quantum secret sharing with source flaws. Sci. Rep. 8, 5728 (2018)

    Article  ADS  Google Scholar 

  6. Hillery, M., Buzek, V., Berthiaume, A.: How to share a secret. Quantum Secret Shar. 59, 1829–1834 (1999)

    MATH  Google Scholar 

  7. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  8. Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 15–19 (2005)

    MathSciNet  Google Scholar 

  9. Lin, S., Wen, Q., Qin, S., et al.: Multiparty quantum secret sharing with collective eavesdropping check. Opt. Commun. 282, 4455–4459 (2009)

    Article  ADS  Google Scholar 

  10. Deng, F., Zhou, H., Long, G., et al.: Bidirectional quantum secret sharing and secret splitting with polarized single photon. Phys. Lett. A 337, 329–334 (2005)

    Article  ADS  Google Scholar 

  11. Wang, H., Zhang, S., Yeon, K., et al.: Multiparty quantum secret sharing via introducing auxiliary particles. J. Korean Phys. Soc. 49, 472–476 (2006)

    Google Scholar 

  12. Zhou, P., Li, X., Deng, F., et al.: Efficient three-party quantum secret sharing with single photons. Chin. Phys. Lett. 24, 2181–2184 (2007)

    Article  ADS  Google Scholar 

  13. Wang, T., Wen, Q.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11, 434–443 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Wang, J., Li, L., Peng, H., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)

    Article  ADS  Google Scholar 

  15. Cai, X., Wang, T., Zhang, R., et al.: Security of verifiable threshold quantum secret sharing with sequential communication. IEEE Access 7, 134854–134861 (2019)

    Article  Google Scholar 

  16. Mashhadi, S.: General secret sharing based on quantum Fourier transform. Quantum Inf. Process. 18 (2019)

  17. Sutradhar, K., Om, H.: Efficient quantum secret sharing without a trusted player. Quantum Inf. Process. 19 (2020)

  18. Cao, H., Ma, W.: (t, n) threshold quantum state sharing scheme based on linear equations and unitary operation. IEEE Photonics J. 9, 1–7 (2017)

    Google Scholar 

  19. Yang, Y., Gao, F., Wu, X., et al.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)

    Article  ADS  Google Scholar 

  20. Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14, 2997–3004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Qin, H., Dai, Y.: Verifiable (t, n) threshold quantum secret sharing using d-dimensional Bell state. Inf. Process. Lett. 116, 351–355 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lu, C., Miao, F., Meng, K., et al.: Threshold quantum secret sharing based on single qubit. Quantum Inf. Process. 17 (2018)

  23. Qin, H., Dai, Y.: d-Dimensional quantum state sharing with adversary structure. Quantum Inf. Process. 15, 1689–1701 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Liu, L., Li, Z., Han, Z., et al.: A quantum secret sharing scheme with verifiable function. Eur. Phys. J. D 74 (2020)

  25. Song, X., Liu, Y., Deng, H., et al.: (t, n) threshold d-level quantum secret sharing. Sci. Rep. 7, 6366 (2017)

    Article  ADS  Google Scholar 

  26. Yang, W., Huang, L., Shi, R., et al.: Secret sharing based on quantum Fourier transform. Quantum Inf. Process. 12, 2465–2474 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lu, H., Zhang, Z., Chen, L., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)

    Article  ADS  Google Scholar 

  28. Wei, K., Yang, X., Zhu, C., et al.: Quantum secret sharing without monitoring signal disturbance. Quantum Inf. Process. 17, 230 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Jia, H., Wen, Q., Gao, F., et al.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035–1041 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  30. Hsu, J.L., Chong, S.K., Hwang, T., et al.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331–344 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. Liao, C.H., Yang, C.W., Hwang, T.: Comment on “Dynamic quantum secret sharing”. Quantum Inf. Process. 12, 3143–3147 (2013)

  32. Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907–1916 (2014)

    Article  ADS  Google Scholar 

  33. Qin, H., Dai, Y.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quantum Inf. Process. 16, 64 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Song, Y., Li, Z., Li, Y.: A dynamic multiparty quantum direct secret sharing based on generalized GHZ states. Quantum Inf. Process. 17, 244 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Yang, C.W., Tsai, C.W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 19, 162 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  36. Cai, Q.Y., Li, W.B.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21, 601–603 (2004)

    Article  ADS  Google Scholar 

  37. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Natural Science Foundation of China (Grant No. 61772168)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Yan, J. & Zhu, S. General quantum secret sharing scheme based on two qudit. Quantum Inf Process 20, 328 (2021). https://doi.org/10.1007/s11128-021-03270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03270-2

Keywords