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Abstract In quantum resource theory (QRT), asymmetry recognized as a
valid resource for the advantage of various quantum information processing.
In this paper, we establish resource theory of asymmetry using quantum Fisher
information (QFI). By defining the average Fisher information as a measure
of asymmetry, it is shown that the discrepancy of bipartite global and local
asymmetries naturally induces the nonclassical correlation between the sub-
systems. This measure satisfies all the necessary axioms of a faithful measure
of bipartite quantum correlation. As an illustration, we have studied the pro-
posed measure for an arbitrary pure state and Bell diagonal state.

Keywords Quantum resource theory · Correlation · Fisher information ·
Asymmetry

1 Introduction

In the last two decades, quantum resource theory has attracted much atten-
tion owing to its potential applications in quantum information processing
and considerable effort has been dedicated to the development and implica-
tions of quantum resource theory [1]. Any quantum system can exhibit many
interesting properties such as entanglement [2,3], nonlocality and quantum
coherence, which are consequence of superposition principle and representing
fundamental departures from classical physics [4]. These peculiar properties
are considered as an essential resources for quantum information processing
tasks. Quantification of such features is a worthwhile task in the framework
of resource theory. In recent years, many quantum resources in different con-
text have been proposed such as entanglement, quantum correlation (beyond

Center for Nonlinear Science and Engineering, School of Electrical and Electronics Engi-
neering, SASTRA Deemed University, Tamil Nadu, India
E-mail: rajendramuth@gmail.com

http://arxiv.org/abs/2101.03721v1


2 R. Muthuganesan, V. K. Chandrasekar

entanglement) [5,6,7,8,9,10,11,12,13,14,15], quantum coherence [16,17,18],
asymmetry [19,20] etc.

Among the above, asymmetry plays an important role in the development
of quantum information theory and deep understanding of quantum systems.
The quantum state may or may not be invariant with respect to the action of
the group and the asymmetry is defined as the degree of symmetry breaking.
In general, the symmetry breaking, is a fundamental mechanism for the variety
of matters, which is also useful in understanding of microscopic picture of fun-
damental interactions and emergence of macroscopic structure. Further, the
significance of asymmetry can effectively identified in some significant con-
densed matter phenomena, such as accidental degeneracy and spontaneous
symmetry breaking. With the development of qualitative characterizations of
asymmetry, recently, the researchers paid wide attention on the quantification
of asymmetry also. In the context various measures of asymmetry have been
introduced and explored in detail, such as the entropic measure of asymme-
try [20,21], robustness of asymmetry [22], asymmetry weight [23], measure of
asymmetry based on commutators [24,25], Frobenius norm based measure of
asymmetry [26].

The quantum correlation and its monogamy relation are the primary tools
for the understanding of nature nonclassical properties of a quantum system. In
general, asymmetry and correlations are the fundamental quantum resources
and ubiquitous in quantum physics. In this work, we investigate the quantifi-
cation of quantumness from the viewpoint of resource theory of asymmetry.
By defining asymmetry of the bipartite quantum state, we propose the dif-
ference between the bipartite global and local asymmetries naturally induces
the nonclassical correlation between the subsystems as a quantum correlation
measure of the bipartite state. This measure satisfies basic requirements of
bipartite quantum correlation measure.

The structure of the paper as follows. In Sec. 2, we present the review
of quantum Fisher information. In Sec. 3, we establish the resource theory
of asymmetry in terms of QFI. The bipartite quantum correlation measure
defined and characterized in Sec. 4. Finally, the conclusions are given in Sec.
5.

2 Overview on QFI

Quantum Fisher information (QFI) is the most important and promising tool
in quantum information theory to enhance the precision and efficiency of quan-
tum metrology protocols. Further, QFI is also useful in quantification of re-
sources such as quantum coherence and quantum correlation. The dynamics
and behaviors of QFI in the physical systems are analyzed recently. In general,
QFI quantifies the amount of information contained in state ρ with respect to
any physical observable K [27] and is reduced to variance of the observable in
the state ρ. For any arbitrary quantum state ρθ = UρU † that depends on the
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parameter θ, we can define the QFI as

F(ρθ) =
1

4
Tr[ρθL

2
θ],

where the state ρθ can be obtained from an initial probe state ρ subjected
to a unitary transformation U = eiKθ. In order to extract the knowledge
about θ from the parametric state ρθ, we set generalized quantum measure-
ments, namely positive-operator-valued measures (POVMs), M = {Mk|Mk ≥
0,
∑

kMk = 1}. Here, Lθ is symmetric logarithmic derivative defined as the
solution of the equation

dρθ
dθ

=
1

2
(ρθLθ + Lθρθ).

Following the spectral decomposition ρ =
∑

i pi|ψi〉〈ψi|, with pi ≥ 0 and
∑

i=1 pi = 1, the F(ρ,K) is computed as [28,29]

F(ρ,K) =
1

2

∑

i6=j

(pi − pj)
2

pi + pj
|〈ψi|K|ψj〉|2. (1)

The quantum Fisher information has the following theoretic-information
properties:

F1. QFI is a non-negative i.e., F(ρ,K) ≥ 0.
F2. Quantum Fisher information reduces to variance V (ρ,K) for pure states,

namely, F(ρ,K) = V (ρ,K). In general, if ρ is mixed, then

0 ≤ F(ρ,K) ≤ V (ρ,K)

F3. F(ρ,K) is unchanged under any unitary transformation U commuting with
the observable K [30], i.e.,

F(ρ,K) = F(UρU †,K).

F4. F(ρ,K) is convex, which means that if several different quantum systems
are mixed, the information content of the resulting system is not larger than
the average information content of the component systems [30]. Mathemat-
ically,

F
(

∑

n

λnρn,K

)

≤
∑

n

λnF(ρn,K)

where
∑

n λn = 1, λn ≥ 0 and ρn are quantum states.
F5. F(ρ,K) is independent of choice of orthonormal basis ρab = ρa ⊗ ρa.
F6. For bipartite state the Fisher information is superadditive [31]i.e.,

F(ρab,Ka ⊗ 1
b + 1

a ⊗Kb) ≤ F(ρa,Ka) + F(ρb,Kb).

The equality holds only for product state.
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3 Resource theory of asymmetry

In quantum mechanics, any resource theory consists of a set of free states and
a set of free operations. The amount of resource contained in a state can be
quantified using resource monotones. The free states are not possessing the
resource under consideration and can not be used for quantum information
processing tasks. On the other hand, free operations are quantum operations
that map a free state into another free state or unable to create resource from
the free states. In order to develop the resource theory of asymmetry based
on QFI, we recall the definition of free states and free operations with in the
framework of resource theory.

Let D(H) be the convex set of density operators acting on the Hilbert
space H and G is a symmetry group with associated unitary representation
{Ug}. Then we define,

Ug(τ) = UgτU
†
g (2)

and the state σ ∈ D(H) is defined as a symmetric state with respect to G if
and only if

Ug(σ) = σ (3)

for all g ∈ G. Then we define a set which constitutes the set of free states for
the resource theory of asymmetry as

S := {σ ∈ D(H) : Ug(σ) = σ}. (4)

Similarly, a set of covariant operations with respect to group G considered
as free operation in the resource theory of asymmetry. Such an operation is
defined by a superoperator L : D(H) → D(H) such that

L(Ug(τ)) = Ug(L(τ)), ∀ g ∈ G. (5)

With the above perspective, we define asymmetry of arbitrary quantum
state based on the QFI on the system space H with respect to Lie group G ⊂
S(U) with dimension d. Let {Tj : j = 1, 2, 3, · · · , dimLG} be any orthonormal
basis of LG, which is corresponding Lie algebra spanned by the generators of
G and a subspace of the Hilbert space consisting of all observables (Hermitian
operators) on K with the Hilbert-Schmidt inner product 〈A|B〉 = TrAB. Here
Tr denotes trace of an operator. The asymmetry of the state ρ with respect to
the group G or the corresponding Lie algebra LG is defined as

A(ρ,LG) =
1

4

∑

j

F(ρ, Tj), (6)

where the numerical factor 1
4 is a normalization factor inserted for our conve-

nience. It is worth mentioning that A(ρ,LG) is independent of choice of the
orthonormal basis {Tj} of LG and considered as a well-defined measure. The
QFI based measure of asymmetry of the state ρ with respect to the group G
has the following interesting properties:
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i. A(ρ,LG) ≥ 0. The equality holds if and only if [ρ, Tj] = 0, ∀ j.
ii. For any unitary operator U , A(ρ,LG) is unitary invariant in the sense that

A(ρ,LG) = A(UρU †,LG).
iii. A(ρ,LG) is convex with respect to ρ in the sense that

A
(

∑

i

λiρi,LG
)

≤
∑

i

λiA (ρi,LG) .

where
∑

i λi = 1, λi ≥ 0 and ρi are quantum states on the system space
H .

The above properties can be seen directly from the properties of Fisher infor-
mation.

4 Asymmetry-induced nonclassical correlations

In order to quantify the quantum correlation contained in a bipartite quantum
state, we first define the asymmetry for bipartite quantum state. Let us con-
sider a bipartite quantum state ρab on the composite separable Hilbert space
Hab = Ha ⊗ Hb shared by a and b. Here ρa and ρb are the marginal states
on the corresponding Hilbert spaces Ha and Hb respectively with dimension
dimHa(b) = da(b). Then we define the orthonormal basis in the composite
Hilbert space as

{Xm ⊗ 1
b,1a ⊗ Yn : m = 1, 2, 3, · · · , d2a; n = 1, 2, 3, · · ·d2b},

where {Xm : m = 1, 2, · · · , d2a} and {Yn : n = 1, 2, · · · , d2b} are any orthonor-
mal bases of the Lie algebras La of U(Ha) and Lb of U(Hb) respectively.

With these settings, one can define asymmetry of a bipartite state as av-
erage Fisher information with respect to each generator of the basis. The
measure of asymmetry of ρab with respect to the group U(Ha) × U(Hb), or
equivalently, the corresponding Lie algebra Lab = La ⊕ Lb:

A(ρab,Lab) = 1

4

d2
a
∑

m=1

F(ρab, Xm ⊗ 1
b) +

1

4

d2
b
∑

n=1

F(ρab,1a ⊗ Yn).

We can rewrite the asymmetry of bipartite state as

A(ρab,Lab) =
d2
a
∑

m=1

A(ρab,La) +
d2
b
∑

n=1

A(ρab,Lb). (7)

Similarly, we can define asymmetry of local state ρa = Trb(ρ
ab) with respect

to the group U(Ha), and the corresponding Lie algebra La as

A(ρa,La) = 1

4

d2
a
∑

m=1

F(ρa, Xm). (8)
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The asymmetry of the local state ρb = Tra(ρ
ab) with the corresponding Lie

algebra Lb is

A(ρb,Lb) = 1

4

d2
b
∑

n=1

F(ρb, Yn). (9)

The asymmetries of the local states A(ρa,La) and A(ρb,Lb) are also indepen-
dent of the choice of the orthonormal bases of La and Lb respectively. The
sum of local asymmetries quantifies the total asymmetry of local states.

The measure of asymmetry of the global state A(ρab,Lab) with respect to
the local unitary group has the following interesting properties:

A1. A(ρab,Lab) ≥ 0, equality holds if and only if ρab is a maximally mixed state
i.e., ρab = 1

ab/dadb, where 1
ab is the identity operator on the bipartite

system space Ha ⊗Hb.
A2. A(ρab,Lab) is locally unitary invariant i.e.,

A
(

ρab,Lab
)

= A((U ⊗ V )ρab(U ⊗ V )†,Lab)

A3. A(ρab,Lab) is convex with respect to ρab in the sense that

A





∑

j

λjρ
ab
j ,Lab



 ≤
∑

j

λjA(ρabj ,Lab)

A4. A(ρab,Lab) is superadditive in the sense that

A(ρab,Lab) ≥ A(ρa,La) +A(ρb,Lb).

The equality holds only for the product state.
A5. A(ρab,Lab) is not increased under the completely positive and trace pre-

serving (CPTP) map.
A6. A(ρab,Lab) is independent of choice of orthonormal basis.

Now we sketch the proof of the above properties.
It is quite easy to understand the positivity of A(ρab,Lab) from the pos-

itivity of Fisher information. From Eq. (7), we can understand the fact that
A(ρab,Lab) = 0 leads A(ρab,La) = 0 and A(ρab,Lb) = 0. Using the result
given in ref. [], we can observe that

A(ρab,Lab)−A(ρa,La) ≥ 0. (10)

For product state ρab = ρa ⊗ ρb, the asymmetry of global state is equal to its
marginal asymmetry i.e., A(ρab,Lab) − A(ρa,La). Hence, the above equality
holds for only product state. If A(ρab,Lab) = 0, from the above equation,
we find that A(ρa,La) = 0 and this is the case only when ρa = 1/da is
the maximally mixed state. Similarly, we conclude that ρb = 1

b/db is also the
maximally mixed state. Combining these facts, it follows that is ρab = 1

ab/dadb
the maximally mixed state on Ha ⊗Hb .
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Properties A2–A4 follows straightforwardly from the properties of Fisher
information F3–F5. To show the property A5, we have to show that the
quantum Fisher information do not increase under CPTP map. To show this,
First we define a CPTP map on subsystem b and it can be expressed as

Ia ⊗ Eab(ρab) = Trc(1
a ⊗ U bcρab ⊗ ρc(1a ⊗ U bc)†) (11)

where ρc is a density matrix of an ancillary system c, and U bc is a unitary
operation in state space of composite system bc.

F(Ia ⊗ Eab(ρab, T a ⊗ 1
b) = F(Trc(1

a ⊗ U bcρab ⊗ ρc(1a ⊗ U bc)†, T a ⊗ 1
b)

≤ F(1a ⊗ U bcρab ⊗ ρc(1a ⊗ U bc)†, T a ⊗ 1
b)

= F(ρab ⊗ ρc,1a ⊗ U bc(T a ⊗ 1
b)1a ⊗ U bc)†)

= F(ρab ⊗ ρc, T a ⊗ 1
b)

= F(ρab, T a ⊗ 1
b).

Here the inequality follows from Eq. (10).
Next, we define bipartite quantum correlation measure in terms of asym-

metry of bipartite state. In general, the asymmetry of ρab with respect to La
is larger than the asymmetry of ρa with respect to La. Similarly, the asymme-
try of ρab with respect to Lb is larger than the asymmetry of ρb with respect
to Lb. We define the quantum correlation as the discrepancy between the
asymmetries of a bipartite state and its marginal states with respect to the
same group that comes from the correlations contained in the bipartite state.
Mathematically, it can be written

Q(ρab) = A(ρab,Lab)−A(ρa,La)−A(ρb,Lb) (12)

as a measure of correlations contained in the state ρab. Using the property of
QFI (F4.), the correlation measure is redefined as

Q(ρab) = A(ρab,Lab)−A(ρa ⊗ ρb,Lab). (13)

Using Eq. (7), it can be rewritten as

Q(ρab) = A(ρab,La) +A(ρab,Lb)−A(ρa,La)−A(ρb,Lb)
= A(ρab,La)−A(ρa,La) +A(ρab,Lb)−A(ρb,Lb)
= Qa(ρab) +Qb(ρab) (14)

Here Qa(b)(ρab) = A(ρab,La) − A(ρa(b),La(b)), which quantifies the discrep-
ancy between the asymmetries between ρab and ρa(b) with respect to the local
unitary group on system a(b). In general, a faithful measure of bipartite cor-
relation should satisfy three necessary axioms such as (i) should be zero for
tensor product states, and a positive for entangled states, (ii) should be in-
variant under local unitary transformations on each one of the two subsystems
and (iii) should coincide with quantum entanglement for pure states. Here we
demonstrate the some important properties of asymmetry based quantum cor-
relation measure Q(ρab):
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Q1. Q(ρab) ≥ 0. The equality hold for product state ρab = ρa ⊗ ρb.
Q2. Q(ρab) is locally unitary invariant.
Q3. Q(ρab) is convex with respect to ρab in the sense that

Q





∑

j

λjρ
ab
j ,Lab



 ≤
∑

j

λjQ(ρabj ,Lab).

Q4. For any pure state |Ψ〉 with d = da ≤ db, Q(|Ψ〉〈Ψ |) ≤ (d − 1)/d. The
maximum is achieved when the state is maximally entangled.

The properties Q1–Q3 are straightforward to prove from the properties of
asymmetry of bipartite state. Hence, the asymmetry based quantum correla-
tion is a valid quantifier of bipartite correlation. We shall provide proof of the
property Q4 in the next section.

Now, we generalize these formalisms to the resource theory of asymmetry
for multipartite system and define a measure of multipartite quantum corre-
lation measure using asymmetry. Let ρa1,a2,··· ,an be the multipartite states of
the system space Ha1 ⊗· · ·⊗Han . The asymmetry of the state directly defined
as

A(ρa1,··· ,an ,La1,··· ,an) =
n
∑

i=1

A(ρa1,··· ,an ,Lai), (15)

where La1,··· ,an = La1 ⊕ · · ·⊕La1 is the Lie algebra of the local unitary group
U(Ha1)× · · · × U(Han) on the total space Ha1 · · · ⊗Han . The corresponding
measure of correlations can be defined as

Q(ρa1,··· ,an) = F(ρa1,··· ,an ,La1,··· ,an)−F(ρa1 ⊗ · · · ⊗ ρan ,La1,··· ,an),

and in terms of asymmetry

Q(ρa1,··· ,an) =

n
∑

i=1

A(ρa1,··· ,an ,Lai)−A(ρai ,Lai). (16)

The above measure quantifies the amount of correlations in multipartite quan-
tum state ρa1,··· ,an in terms of the differences between asymmetries of the
global and local states.

4.1 Examples

In this section, we compute the asymmetry induced correlation measure for
an arbitrary pure and Bell diagonal state.

Pure state: The Schmidt decomposition of the pure state as

|ψ〉 =
d
∑

i=1

√

λi|i〉a|i〉b, d = min{da, db}, (17)
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with reduced state ρa(b) = Trb(a)(|ψ〉〈ψ|) and λ|ψ〉 = (λ1, λ1, · · · , λd) be the
Schmidt coefficients, with λi ≥ 0 and

∑

i λi = 1. To compute Q(|ψ〉〈ψ|), first
we define the set of generators as

T
(1)
ij =

1

2
(|i〉〈j|+ |j〉〈i|), 1 ≤ i < j ≤ d,

T
(2)
ij =

1

2i
(|i〉〈j| − |j〉〈i|), 1 ≤ i < j ≤ d,

T
(3)
ij =

1

2
√

i(i− 1)
(|1〉〈1|+ |2〉〈2|+ · · ·+ |i− 1〉〈i− 1|+ (1 − i)|i〉〈i|), 2 ≤ i ≤ d.

Then, we compute

F(|ψ〉〈ψ|) = 1

2

(

d−
d
∑

i

λ2i

)

, F(ρa) =
1

4



2d−
∑

i,j

4λiλj
λi + λj



 ,

and

Qa(|ψ〉〈ψ|) = 1

2

∑

i6=j

(

2λiλj
λi + λj

+ λiλj

)

.

Considering the same set of generators for the subsystem b, we have

Qb(|ψ〉〈ψ|) = 1

2

∑

i6=j

(

2λiλj
λi + λj

+ λiλj

)

.

Then

Q(|ψ〉〈ψ|) =
∑

i6=j

(

2λiλj
λi + λj

+ λiλj

)

.

Qa(|ψ〉〈ψ|) is a Schur concave, implies that Qa(|ψ〉〈ψ|) ≥ Qa(|φ〉〈φ|) iff the

Schmidt coefficient λ|ψ〉 is majorized by λ|φ〉, which means that
∑k

l=1 λ
↓
|ψ〉 ≤

∑k

l=1 λ
↓
|ψ〉 with k = 1, 2, · · · , d and equality is required for k = d, where ↓

indicates rearranging elements in descending order. From Schur concavity, the
bound of Q(|ψ〉〈ψ|) is given as

0 ≤ Q(|ψ〉〈ψ|) ≤ d− 1

d
. (18)

Here the lower bound is reached by product states with λ
↓
|ψ〉 = (1, 0, 0, · · · , 0)

and the upper bound is reached by maximally entangled states with λ
↓
|ψ〉 =

(1/d, 1/d, · · · , 1/d). The concurrence of the pure state is C(|ψ〉〈ψ|) = 2
√
λ1λ2.

The Qa(|ψ〉〈ψ|) is computed as

Qa(|ψ〉〈ψ|) = 3λ1λ2, (19)
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and the correlation is connected with the concurrence in the following way

Q(|ψ〉〈ψ|) = 3

2
C2(|ψ〉〈ψ|). (20)

Bell diagonal state: Next we study the asymmetry of the Bell diagonal
state whose marginal states are maximally mixed. In Bloch representation of
the state can be expressed as

ρ =
1

4
+
∑

i

ciσi ⊗ σi. (21)

The asymmetries of the local states are A(ρa,La) = A(ρb,Lb) = 0. The Fisher
information of the global state is

F(ρ, T ) = 3− 4
∑

i>j

βiβj
βi + βj

, (22)

where βi are the eigenvalues of Bell diagonal state with

β1 = 1/4− c1 + c2 + c3, β2 = 1/4 + c1 − c2 + c3,

β3 = 1/4 + c1 + c2 − c3, β4 = 1/4− c1 − c2 − c3.

Then,

Qa(ρ) = Qb(ρ) =
1

4



3− 4
∑

i>j

βiβj
βi + βj



 ,

and the quantum correlation is

Q(ρ) =
1

2



3− 4
∑

i>j

βiβj
βi + βj



 . (23)

5 Conclusions

In conclusion, we have defined the asymmetry of state as average of quantum
Fisher information with respect to Lie groups and Lie algebras. As a tool on
the way, we have shown that the discrepancy between the asymmetry of bi-
partite global state and asymmetries of local states quantifies the quantum
correlation contained in a bipartite quantum state. Further, this quantity sat-
isfies the axioms of a valid measure of bipartite quantum correlation and is
nonincreasing under the action of general CPTP quantum channels on one of
the subsystems. Hence, the proposed quantity is a good measure of bipartite
quantum correlation.

Since the asymmetry-based quantum correlation measure does not have
an optimization procedure, is a computable measure irrespective of dimension
of the Hilbert space of the subsystems. We have established a simple relation
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between the concurrence and the correlation measure. Moreover, we have gen-
eralized the measure to multipartite settings. Finally, the significance of this
measure was illustrated with some examples.

The quantum Fisher information is also closely connected with parameter
estimation and useful in quantum metrology. The proposed correlation mea-
sure has more insight into metrology and quantum information theory.
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