Abstract
In quantum resource theory (QRT), asymmetry recognized as a valid resource for the advantage of various quantum information processing. In this paper, we establish resource theory of asymmetry using quantum Fisher information (QFI). By defining the average Fisher information as a measure of asymmetry, it is shown that the discrepancy of bipartite global and local asymmetries naturally induces the nonclassical correlation between the subsystems. This measure satisfies all the necessary axioms of a faithful measure of bipartite quantum correlation. As an illustration, we have studied the proposed measure for an arbitrary pure state, a class of separable states and Bell diagonal state.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)
Einstein, A., Podolsky, B., Rose, R.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)
Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)
Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Theor. 34, 6899 (2001)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)
Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2012)
Luo, S.: Using measurement-induced disturbance to characterize correlations as classical and quantum. Phys. Rev. A 77, 022301 (2008)
Xiong, S., Zhang, W.J., Yu, C.-S., Song, H.-S.: Uncertainty-induced nonlocality. Phys. Lett. A 378, 344 (2014)
Muthuganesan, R., Chandrasekar, V.K.: Measurement induced nonlocality based on affinity. Commun. Theor. Phys. 72, 075103 (2020)
Muthuganesan, R., Sankaranarayanan, R.: Fidelity based measurement induced nonlocality. Phys. Lett. A 381, 3028 (2017)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)
Muthuganesan, R., Chandrasekar, V. K., Sankaranarayanan, R.: Quantum coherence measures based on affinity. Phys. Lett. A 394, 127205 (2021)
Dowling, M.R., Doherty, A.C., Wiseman, H.M.: Entanglement of indistinguishable particles in condensed matter physics. Phys. Rev. Lett. 91, 097902 (2003)
Vaccaro, J.A., Anselmi, F., Wiseman, H.M., Jacobs, K.: Trade-off between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules. Phys. Rev. A 77, 032114 (2008)
Wiseman, H.M., Vaccaro, J.A.: The entanglement of indistinguishable particles shared between two parties. Phys. Rev. Lett. 91, 097902 (2003)
Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)
Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97, 032342 (2018)
Fang, Y.N., Dong, G.H., Zhou, D.L., Sun, C.P.: Quantification of symmetry. Commun. Theor. Phys. 65, 423–433 (2016)
Dong, G.-H., Fang, Y.-N., Sun, C.-P.: Quantifying spontaneously symmetry breaking of quantum many-body systems. Commun. Theor. Phys. 68, 405 (2017)
Yao, Y., Dong, G.-H., Xiao, X., Sun, C.-P.: Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 6, 32010 (2016)
Kim, S., Li, L., Kumar, A., Wu, J.: Characterizing nonclassical correlations via local quantum Fisher information. Phys. Rev. A 97, 032326 (2018)
Li, L., Wang, Q.-W., Shen, S.-Q., Li, M.: Quantum coherence measures based on Fisher information with applications. Phys. Rev. A 103, 012401 (2021)
Helstrom, C.W.: Quantum Detection and Estimation Theory. Mathematics in Science and Engineering. Elsevier, New York (1976)
Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)
Modi, K., Cable, H., Williamson, M., Vedral, V.: Quantum correlations in mixed-State metrology. Phys. Rev. X 1, 021022 (2011)
Toth, I.G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 47, 424006 (2014)
Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)
Acknowledgements
This work has been financially supported by the Council of Scientific and Industrial Research (CSIR), Government of India, for the financial support under Grant No. 03(1444)/18/EMR-II.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Muthuganesan, R., Chandrasekar, V.K. Asymmetry-induced nonclassical correlation. Quantum Inf Process 20, 335 (2021). https://doi.org/10.1007/s11128-021-03272-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03272-0