Skip to main content
Log in

Asymmetry-induced nonclassical correlation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In quantum resource theory (QRT), asymmetry recognized as a valid resource for the advantage of various quantum information processing. In this paper, we establish resource theory of asymmetry using quantum Fisher information (QFI). By defining the average Fisher information as a measure of asymmetry, it is shown that the discrepancy of bipartite global and local asymmetries naturally induces the nonclassical correlation between the subsystems. This measure satisfies all the necessary axioms of a faithful measure of bipartite quantum correlation. As an illustration, we have studied the proposed measure for an arbitrary pure state, a class of separable states and Bell diagonal state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  2. Einstein, A., Podolsky, B., Rose, R.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  3. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  6. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  7. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  8. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Theor. 34, 6899 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  10. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  11. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  12. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2012)

    Article  Google Scholar 

  13. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical and quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  14. Xiong, S., Zhang, W.J., Yu, C.-S., Song, H.-S.: Uncertainty-induced nonlocality. Phys. Lett. A 378, 344 (2014)

    Article  ADS  Google Scholar 

  15. Muthuganesan, R., Chandrasekar, V.K.: Measurement induced nonlocality based on affinity. Commun. Theor. Phys. 72, 075103 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. Muthuganesan, R., Sankaranarayanan, R.: Fidelity based measurement induced nonlocality. Phys. Lett. A 381, 3028 (2017)

    Article  ADS  Google Scholar 

  17. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  18. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  19. Muthuganesan, R., Chandrasekar, V. K., Sankaranarayanan, R.: Quantum coherence measures based on affinity. Phys. Lett. A 394, 127205 (2021)

  20. Dowling, M.R., Doherty, A.C., Wiseman, H.M.: Entanglement of indistinguishable particles in condensed matter physics. Phys. Rev. Lett. 91, 097902 (2003)

    Article  Google Scholar 

  21. Vaccaro, J.A., Anselmi, F., Wiseman, H.M., Jacobs, K.: Trade-off between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules. Phys. Rev. A 77, 032114 (2008)

    Article  ADS  Google Scholar 

  22. Wiseman, H.M., Vaccaro, J.A.: The entanglement of indistinguishable particles shared between two parties. Phys. Rev. Lett. 91, 097902 (2003)

    Article  ADS  Google Scholar 

  23. Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)

    Article  ADS  Google Scholar 

  24. Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97, 032342 (2018)

    Article  ADS  Google Scholar 

  25. Fang, Y.N., Dong, G.H., Zhou, D.L., Sun, C.P.: Quantification of symmetry. Commun. Theor. Phys. 65, 423–433 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dong, G.-H., Fang, Y.-N., Sun, C.-P.: Quantifying spontaneously symmetry breaking of quantum many-body systems. Commun. Theor. Phys. 68, 405 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Yao, Y., Dong, G.-H., Xiao, X., Sun, C.-P.: Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 6, 32010 (2016)

    Article  ADS  Google Scholar 

  28. Kim, S., Li, L., Kumar, A., Wu, J.: Characterizing nonclassical correlations via local quantum Fisher information. Phys. Rev. A 97, 032326 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Li, L., Wang, Q.-W., Shen, S.-Q., Li, M.: Quantum coherence measures based on Fisher information with applications. Phys. Rev. A 103, 012401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  30. Helstrom, C.W.: Quantum Detection and Estimation Theory. Mathematics in Science and Engineering. Elsevier, New York (1976)

    MATH  Google Scholar 

  31. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. Modi, K., Cable, H., Williamson, M., Vedral, V.: Quantum correlations in mixed-State metrology. Phys. Rev. X 1, 021022 (2011)

    Google Scholar 

  33. Toth, I.G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 47, 424006 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Council of Scientific and Industrial Research (CSIR), Government of India, for the financial support under Grant No. 03(1444)/18/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Muthuganesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuganesan, R., Chandrasekar, V.K. Asymmetry-induced nonclassical correlation. Quantum Inf Process 20, 335 (2021). https://doi.org/10.1007/s11128-021-03272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03272-0

Keywords