Abstract
We design an experimental feasible Toffoli gate, comprising nonlinear optical gates via cross-Kerr nonlinearities (XKNLs) and linear optical devices, on three photonic qubits (photons). The Toffoli gate is a three-qubit universal quantum controlled gate for various quantum information processing schemes. Thus, we propose an efficient method to construct a Toffoli gate using nonlinear optical gates that employ weak XKNLs, quantum bus beams, and photon-number-resolving measurements. Furthermore, to ensure the reliable performance of the Toffoli gate (via XKNLs), we describe an experimental condition to reduce the influence (photon loss and dephasing) of the decoherence effect induced in nonlinear optical gates.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)
Heo, J., Hong, C.H., Yang, H.J., Hong, J.P., Choi, S.G.: Analysis of optical parity gates of generating Bell state for quantum information and secure quantum communication via weak cross-Kerr nonlinearity under decoherence effect. Quantum Inf. Process. 16, 10 (2017)
Steinlechner, F., Ecker, S., Fink, M., Liu, B., Bavaresco, J., Huber, M., Scheidl, T., Ursin, R.: Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2017)
Heo, J., Hong, C., Choi, S.G., Hong, J.P.: Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot. Sci. Rep. 9, 10151 (2019)
Zhang, Z., Scully, M.O., Agarwal, G.S.: Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium. Phys. Rev. Research 1, 023021 (2019)
Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J.: Scheme for encoding single logical qubit information into three-photon decoherence-free states assisted by quantum dots. Quantum Inf. Process. 18, 216 (2019)
Heo, J., Hong, C., Kang, M.S., Yang, H.J.: Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states. Sci. Rep. 10, 15334 (2020)
Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J., Kwon, D.: Generation of two-photon hybrid-entangled W state with photonic qubit and time-bin via cross-Kerr nonlinearities. Phys. Scr. 95, 085104 (2020)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)
Bostrom, K., Felbinger, F.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)
Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)
Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15, 2137 (2016)
Heo, J., Hong, C., Kang, M.S., Yang, H.J.: Scheme for bidirectional quantum teleportation of unknown electron-spin states of quantum dots within single-sided cavities. Int. J. Theor. Phys. 59, 3750 (2020)
Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)
Kang, M.S., Heo, J., Choi, S.G., Moon, S., Han, S.W.: Implementation of SWAP test for two unknown states in photons via cross-Kerr nonlinearities under decoherence effect. Sci. Rep. 9, 6167 (2019)
Bouten, L., Vissers, G., Schmidt-Kaler, F.: Quantum algorithm for simulating an experiment: light interference from single ions and their mirror images. Phys. Rev. A 100, 022323 (2019)
Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J., Kwon, D.: Photonic scheme of quantum phase estimation for quantum algorithms via cross-Kerr nonlinearities under decoherence effect. Opt. Express 27, 31023 (2019)
Heo, J., Won, K., Yang, H.J., Hong, J.P., Choi, S.G.: Photonic scheme of discrete quantum Fourier transform for quantum algorithms via quantum dots. Sci. Rep. 9, 12440 (2019)
Kang, M.S., Heo, J., Choi, S.G., Sung, M., Han, S.W.: Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage. Sci. Rep. 10, 5123 (2020)
Fredkin, E., Toffoli, T.: Conservative logic. Internat. J. Theoret. Phys. 21, 219 (1982)
Milburn, G.J.: Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124 (1989)
Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A 53, 2855 (1996)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2001)
Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)
Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)
Jones, C.: Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A 87, 022328 (2013)
Sun, Q., Ye, L.: Implementing Toffoli gate via weak cross-Kerr nonlinearity and classical feedback. Mod. Phys. Lett. B 29, 1550032 (2015)
Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015)
Yu, N., Ying, M.: Optimal simulation of Deutsch gates and the Fredkin gate. Phys. Rev. A 91, 032302 (2015)
Ivanov, S.S., Ivanov, P.A., Vitanov, N.V.: Efficient construction of three- and four-qubit quantum gates by global entangling gates. Phys. Rev. A 91, 032311 (2015)
Dong, L., Lin, Y.F., Wang, J.X., Li, Q.Y., Shen, H.Z., Dong, H.K., Ren, Y.P., Xiu, X.M., Gao, Y.J., Oh, C.H.: Nearly deterministic Fredkin gate based on weak cross-Kerr nonlinearities. J. Opt. Soc. Am. B 33, 253 (2016)
Xiu, X.M., Cui, C., Geng, X., Wang, S.L., Li, Q.Y., Dong, H.K., Gao, Y.J.: Constructing the nearly deterministic Toffoli polarization gate with the spatial degree of freedom based on weak cross-Kerr nonlinearities. Opt. Commun. 426, 308 (2018)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)
Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)
Jeong, H.: Quantum computation using weak nonlinearities: robustness against decoherence. Phys. Rev. A 73, 052320 (2006)
He, B., Nadeem, M., Bergou, J.A.: Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys. Rev. A 79, 035802 (2009)
Wittmann, C., Andersen, U.L., Takeoka, M., Sych, D., Leuchs, G.: Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector. Phys. Rev. A 81, 062338 (2010)
Heo, J., Choi, S.G.: Procedure via cross-Kerr nonlinearities for encoding single logical qubit information onto four-photon decoherence-free states. Sci. Rep. 11, 10423 (2021)
Barrett, S.D., Milburn, G.J.: Quantum-information processing via a lossy bus. Phys. Rev. A 74, 060302 (2006)
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)
Knill, E.: Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics. Phys. Rev. A 68, 064303 (2003)
Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132 (1990)
Kanamori, H., Yokota, H., Tanaka, G., Watanabe, M., Ishiguro, Y., Yoshida, I., Kakii, T., Itoh, S., Asano, Y., Tanaka, S.: Transmission characteristics and reliability of pure-silica-core single-mode fibers. J. Lightwave Technol. 4, 1144 (1986)
Nagayama, K., Matsui, M., Kakui, M., Saitoh, T., Kawasaki, K., Takamizawa, H., Ooga, Y., Tsuchiya, I., Chigusa, Y.: Ultra low loss (0.1484dB/km) pure silica core fiber. SEI Tech. Rev. 57, 3 (2004)
Kok, P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77, 013808 (2008)
Lukin, M.D., Imamoğlu, A.: Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons. Phys. Rev. Lett. 84, 1419 (2000)
Lukin, M.D., Imamoğlu, A.: Controlling photons using electromagnetically induced transparency. Nature 413, 273 (2001)
Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)
Acknowledgments
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1C1C2003302), by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1A2C1006167), by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1A6A1A12047945).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Heo, J., Choi, SG. Toffoli gate with photonic qubits based on weak cross-Kerr nonlinearities. Quantum Inf Process 20, 345 (2021). https://doi.org/10.1007/s11128-021-03279-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03279-7