Skip to main content
Log in

Toffoli gate with photonic qubits based on weak cross-Kerr nonlinearities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We design an experimental feasible Toffoli gate, comprising nonlinear optical gates via cross-Kerr nonlinearities (XKNLs) and linear optical devices, on three photonic qubits (photons). The Toffoli gate is a three-qubit universal quantum controlled gate for various quantum information processing schemes. Thus, we propose an efficient method to construct a Toffoli gate using nonlinear optical gates that employ weak XKNLs, quantum bus beams, and photon-number-resolving measurements. Furthermore, to ensure the reliable performance of the Toffoli gate (via XKNLs), we describe an experimental condition to reduce the influence (photon loss and dephasing) of the decoherence effect induced in nonlinear optical gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)

    Article  Google Scholar 

  2. Heo, J., Hong, C.H., Yang, H.J., Hong, J.P., Choi, S.G.: Analysis of optical parity gates of generating Bell state for quantum information and secure quantum communication via weak cross-Kerr nonlinearity under decoherence effect. Quantum Inf. Process. 16, 10 (2017)

    Article  MathSciNet  Google Scholar 

  3. Steinlechner, F., Ecker, S., Fink, M., Liu, B., Bavaresco, J., Huber, M., Scheidl, T., Ursin, R.: Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2017)

    Article  ADS  Google Scholar 

  4. Heo, J., Hong, C., Choi, S.G., Hong, J.P.: Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot. Sci. Rep. 9, 10151 (2019)

    Article  ADS  Google Scholar 

  5. Zhang, Z., Scully, M.O., Agarwal, G.S.: Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium. Phys. Rev. Research 1, 023021 (2019)

  6. Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J.: Scheme for encoding single logical qubit information into three-photon decoherence-free states assisted by quantum dots. Quantum Inf. Process. 18, 216 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Heo, J., Hong, C., Kang, M.S., Yang, H.J.: Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states. Sci. Rep. 10, 15334 (2020)

    Article  ADS  Google Scholar 

  8. Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J., Kwon, D.: Generation of two-photon hybrid-entangled W state with photonic qubit and time-bin via cross-Kerr nonlinearities. Phys. Scr. 95, 085104 (2020)

  9. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  11. Bostrom, K., Felbinger, F.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

  12. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

  13. Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15, 2137 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Heo, J., Hong, C., Kang, M.S., Yang, H.J.: Scheme for bidirectional quantum teleportation of unknown electron-spin states of quantum dots within single-sided cavities. Int. J. Theor. Phys. 59, 3750 (2020)

    Article  Google Scholar 

  15. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)

    Article  Google Scholar 

  16. Kang, M.S., Heo, J., Choi, S.G., Moon, S., Han, S.W.: Implementation of SWAP test for two unknown states in photons via cross-Kerr nonlinearities under decoherence effect. Sci. Rep. 9, 6167 (2019)

    Article  ADS  Google Scholar 

  17. Bouten, L., Vissers, G., Schmidt-Kaler, F.: Quantum algorithm for simulating an experiment: light interference from single ions and their mirror images. Phys. Rev. A 100, 022323 (2019)

  18. Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J., Kwon, D.: Photonic scheme of quantum phase estimation for quantum algorithms via cross-Kerr nonlinearities under decoherence effect. Opt. Express 27, 31023 (2019)

    Article  ADS  Google Scholar 

  19. Heo, J., Won, K., Yang, H.J., Hong, J.P., Choi, S.G.: Photonic scheme of discrete quantum Fourier transform for quantum algorithms via quantum dots. Sci. Rep. 9, 12440 (2019)

    Article  ADS  Google Scholar 

  20. Kang, M.S., Heo, J., Choi, S.G., Sung, M., Han, S.W.: Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage. Sci. Rep. 10, 5123 (2020)

    Article  ADS  Google Scholar 

  21. Fredkin, E., Toffoli, T.: Conservative logic. Internat. J. Theoret. Phys. 21, 219 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  22. Milburn, G.J.: Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124 (1989)

    Article  ADS  Google Scholar 

  23. Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A 53, 2855 (1996)

    Article  ADS  Google Scholar 

  24. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2001)

  25. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

  26. Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)

  27. Jones, C.: Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A 87, 022328 (2013)

  28. Sun, Q., Ye, L.: Implementing Toffoli gate via weak cross-Kerr nonlinearity and classical feedback. Mod. Phys. Lett. B 29, 1550032 (2015)

    Article  ADS  Google Scholar 

  29. Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015)

    Article  ADS  Google Scholar 

  30. Yu, N., Ying, M.: Optimal simulation of Deutsch gates and the Fredkin gate. Phys. Rev. A 91, 032302 (2015)

  31. Ivanov, S.S., Ivanov, P.A., Vitanov, N.V.: Efficient construction of three- and four-qubit quantum gates by global entangling gates. Phys. Rev. A 91, 032311 (2015)

  32. Dong, L., Lin, Y.F., Wang, J.X., Li, Q.Y., Shen, H.Z., Dong, H.K., Ren, Y.P., Xiu, X.M., Gao, Y.J., Oh, C.H.: Nearly deterministic Fredkin gate based on weak cross-Kerr nonlinearities. J. Opt. Soc. Am. B 33, 253 (2016)

    Article  ADS  Google Scholar 

  33. Xiu, X.M., Cui, C., Geng, X., Wang, S.L., Li, Q.Y., Dong, H.K., Gao, Y.J.: Constructing the nearly deterministic Toffoli polarization gate with the spatial degree of freedom based on weak cross-Kerr nonlinearities. Opt. Commun. 426, 308 (2018)

    Article  ADS  Google Scholar 

  34. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

  35. Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)

  36. Jeong, H.: Quantum computation using weak nonlinearities: robustness against decoherence. Phys. Rev. A 73, 052320 (2006)

  37. He, B., Nadeem, M., Bergou, J.A.: Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys. Rev. A 79, 035802 (2009)

  38. Wittmann, C., Andersen, U.L., Takeoka, M., Sych, D., Leuchs, G.: Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector. Phys. Rev. A 81, 062338 (2010)

  39. Heo, J., Choi, S.G.: Procedure via cross-Kerr nonlinearities for encoding single logical qubit information onto four-photon decoherence-free states. Sci. Rep. 11, 10423 (2021)

    Article  ADS  Google Scholar 

  40. Barrett, S.D., Milburn, G.J.: Quantum-information processing via a lossy bus. Phys. Rev. A 74, 060302 (2006)

  41. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  42. Knill, E.: Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics. Phys. Rev. A 68, 064303 (2003)

  43. Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  44. Kanamori, H., Yokota, H., Tanaka, G., Watanabe, M., Ishiguro, Y., Yoshida, I., Kakii, T., Itoh, S., Asano, Y., Tanaka, S.: Transmission characteristics and reliability of pure-silica-core single-mode fibers. J. Lightwave Technol. 4, 1144 (1986)

    Article  ADS  Google Scholar 

  45. Nagayama, K., Matsui, M., Kakui, M., Saitoh, T., Kawasaki, K., Takamizawa, H., Ooga, Y., Tsuchiya, I., Chigusa, Y.: Ultra low loss (0.1484dB/km) pure silica core fiber. SEI Tech. Rev. 57, 3 (2004)

  46. Kok, P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77, 013808 (2008)

  47. Lukin, M.D., Imamoğlu, A.: Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons. Phys. Rev. Lett. 84, 1419 (2000)

    Article  ADS  Google Scholar 

  48. Lukin, M.D., Imamoğlu, A.: Controlling photons using electromagnetically induced transparency. Nature 413, 273 (2001)

    Article  ADS  Google Scholar 

  49. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1C1C2003302), by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1A2C1006167), by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1A6A1A12047945).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Gon Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J., Choi, SG. Toffoli gate with photonic qubits based on weak cross-Kerr nonlinearities. Quantum Inf Process 20, 345 (2021). https://doi.org/10.1007/s11128-021-03279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03279-7

Keywords

Navigation