Skip to main content

Advertisement

Log in

Simplest non-additive measures of quantum resources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Given an arbitrary state \(\rho \) and some figure of merit \(\mathcal{E}(\rho )\), it is usually a hard problem to determine the value of \(\mathcal{E}(\rho ^{\otimes N})\). One noticeable exception is the case of additive measures, for which we simply have \(\mathcal{E}(\rho ^{\otimes N}) = Ne\), with \(e\equiv \mathcal{E}(\rho )\). In this work, we study measures that can be described by \(\mathcal{E}(\rho ^{\otimes N}) =E(e;N) \ne Ne\), that is, measures for which the amount of resources of N copies is still determined by the single real variable e, but in a nonlinear way. If, in addition, the measures are analytic around \(e=0\), recurrence relations can be found for the Maclaurin coefficients of E for larger N. As an example, we show that the \(\ell _1\)-norm of coherence is a non-trivial case of such a behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The term “resource” is employed in the general sense, since the results to be derived do not rely on all the requirements for a quantity to be a resource (in the resource-theoretic sense).

References

  1. Buscemi, F., Datta, N.: Distilling entanglement from arbitrary resources. J. Math. Phys. 51, 102201 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  2. Tomamichel, M., Berta, M., Renes, J.M.: Quantum coding with finite resources. Nat. Commun. 7, 11419 (2016)

    Article  ADS  Google Scholar 

  3. Fang, K., Wang, X., Tomamichel, M., Duan, R.: Non-asymptotic entanglement distillation. IEEE Trans. Inf. Theory 65, 6454 (2019)

    Article  MathSciNet  Google Scholar 

  4. Christandl, M., Winter, A.: “Squashed entanglement”: an additive entanglement measure. J. Math. Phys. 45, 829 (2004)

  5. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  6. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Liu, C.L., Yu, X.-D., Tong, D.M.: Flag additivity in quantum resource theories. Phys. Rev. A 99, 042322 (2019)

    Article  ADS  Google Scholar 

  8. Parisio, F.: Characterizing scalable measures of quantum resources. Phys. Rev. A 102, 012413 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  9. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  10. de Mier, A.: Lecture Notes for Enumerative Combinatorics, University of Oxford (2004). https://mat-web.upc.edu/people/anna.de.mier/ec/lectec.pdf

  11. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  12. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  13. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  14. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  15. Xi, Z., Yuwen, S.: Coherence measure: logarithmic coherence number. Phys. Rev. A 99, 022340 (2019)

    Article  ADS  Google Scholar 

  16. Brandão, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  17. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  18. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  19. Regula, B., Lami, L., Streltsov, A.: Nonasymptotic assisted distillation of quantum coherence. Phys. Rev. A 98, 052329 (2018)

    Article  ADS  Google Scholar 

  20. Liu, C.L., Zhou, D.L.: Deterministic coherence distillation. Phys. Rev. Lett. 123, 070402 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  21. Maziero, J.: Hilbert–Schmidt quantum coherence in multi-qudit systems. Quantum Inf. Process. 16, 274 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  22. Gross, J.L.: Combinatorial Methods with Computer Applications. Chapman and Hall (2007)

  23. Egorychev, G.P.: Integral Representation and the Computation of Combinatorial Sums. American Mathematical Society, Translations of Mathematical Monographs, vol. 59 (1984)

  24. Riedel, M.R.: Egorychev method and the evaluation of binomial coefficient sums (2021). http://pnp.mathematik.uni-stuttgart.de/iadm/Riedel/papers/egorychev.pdf

Download references

Acknowledgements

The authors thank Bárbara Amaral and Nadja Bernardes for a discussion on the topics addressed in this manuscript. This work received financial support from the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and Conselho Nacional de Desenvolvimento Científico e Tecnológico through its program CNPq INCT-IQ (Grant 465469/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Parisio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Third-order coefficient solution

To solve the recurrence relation (8), we choose \(K=a\) and apply the known solutions for \(d_1(a^n)\) and \(d_2(a^n)\) [8]:

$$\begin{aligned} d_3(a^n)=a^{\nu (n-1)}d_3(a) + 2[d_2(a)]^2a^{\nu (n-1)}\left( \frac{a^{\nu (n-1)}-1}{a^\nu -1}\right) + d_3(a^{n-1})a^{3\nu }. \end{aligned}$$

Remember that \(a^n=N\). The recursive substitution of \(d_3(a^{n})\) into itself \(l=n-1\) times gives:

$$\begin{aligned} d_3(N)= & {} d_3(a)\left[ a^{\nu (n-1)}+a^{\nu (n-2)}a^{3\nu }+\cdots \right] + 2[d_2(a)]^{2} \sum _{l=1}^{n-1} \left\{ a^{\nu (n-l)} \left( \frac{a^{\nu (n-l)}-1}{a^\nu -1}\right) a^{3\nu (l-1)} \right\} \\ \cdots= & {} d_3(a)\sum _{l=1}^{n}a^{\nu (n-l)} a^{3\nu (l-1)} + \frac{2[d_2(a)]^2}{a^\nu -1}\left( \frac{N}{a^3}\right) ^\nu \sum _ {l=1}^{n-1}a^{2\nu l}\left( N^{\nu }a^{-\nu l}-1\right) . \end{aligned}$$

Redefining all sums to start at \(l=0\) and using the geometric series \(\sum _{l=0}^{n-1}x^l=\frac{1-x^{n}}{1-x}\), we get the third order in (9):

$$\begin{aligned} d_3(N)=d_3(a)\left( \frac{N}{a}\right) ^{\nu }\left( \frac{1-N^{2\nu }}{1-a^{2\nu }}\right) + 2[d_2(a)]^2 \left( \frac{N}{a^{2}}\right) ^\nu \frac{(N^\nu -1)(N^\nu -a^\nu )}{(a^\nu -1)(a^{2\nu }-1)} \end{aligned}$$

Binomial coefficients

We start with (4) for \(K=2\) (here the index l is rewritten as \(j-k\)):

$$\begin{aligned} d_j(N)= & {} \sum _{k=0}^{j-1} d_{j-k}(N/2) \sum _{i=1}^{{{j-1} \atopwithdelims (){j-k-1}}}\pi _i(j,j-k;2) \end{aligned}$$
(20)

Remember that \(N \in \mathbb {P}_{2}\), so \(\frac{N}{2}\) is an integer. The hypothesis that only \(d_1(2)\) and \(d_2(2)\) are nonzero means that \(\pi _i(j,l;2)\) is a product of combinations of these two quantities only, so we need to consider the composition of j using only the numbers 1 and 2, which has \(\tiny {\frac{(j-k)!}{k!(j-2k)!}}\) elements, for k repetitions of the number 2 (the maximum value of k is \(\lfloor \frac{j}{2} \rfloor \)), so:

$$\begin{aligned} j = \underbrace{1+\cdots +1}_{j-2k\text { times}}+\underbrace{2+\cdots +2}_{k\text { times}} \rightarrow \sum _{i=1}^{{{j-1} \atopwithdelims (){j-k-1}}} \pi _i(j,j-k;2) = {{j-k} \atopwithdelims (){k}} [d_1(2)]^{j-2k} [d_2(2)]^{k}.\nonumber \\ \end{aligned}$$
(21)

Putting (21) into (20) and considering the case \(E^{(a=2)}(e)=2e+d_2(2)e^2\), we find the following recurrence relation:

$$\begin{aligned} d_j(N)= & {} \sum _{k=0}^{\lfloor \frac{j}{2} \rfloor } d_{j-k}(N/2){{j-k} \atopwithdelims (){k}} 2^{j-2k} [d_2(2)]^{k}. \end{aligned}$$

Now we test expression \(d_j(N)=[d_2(2)]^{j-1}\tiny {{{N} \atopwithdelims (){j}}}\), induced in (11). Using the subset-of-a-subset property [22], we get:

$$\begin{aligned} d_j(N) = [d_2(2)]^{j-1}\sum _{k=0}^{\lfloor \frac{j}{2} \rfloor } {{N/2} \atopwithdelims (){k}}{{N/2-k} \atopwithdelims (){j-2k}} 2^{j-2k}. \end{aligned}$$
(22)

For the evaluation of the sum in (22), we take the integral representation \(\tiny {\left( \begin{array}{c} n \\ m \end{array} \right) } = \frac{1}{2\pi i} \oint _{\Gamma } \frac{(1+z)^n}{z^{m+1}} dz\) to solve the problem using the Egorychev method [23, 24], where z is a complex variable and \(\Gamma \) is a small closed contour around \(z=0\):

$$\begin{aligned} \sum _{k=0}^{\lfloor \frac{j}{2} \rfloor } {N/2 \atopwithdelims ()k}{{N/2-k} \atopwithdelims (){j-2k}} 2^{j-2k} = \sum _{k=0}^{\lfloor \frac{j}{2} \rfloor }\frac{1}{2 \pi i} \oint _{\Gamma } dz \frac{(1+z)^{N/2-k}}{z^{j-2k+1}}{N/2 \atopwithdelims ()k}2^{j-2k}. \end{aligned}$$

Is easy to see that for \(\lfloor \frac{j}{2} \rfloor<k<\frac{N}{2}\) the integral vanishes. By making \(k=\lfloor \frac{j}{2} \rfloor +l\) (so \(l \le \frac{N}{2}- \lfloor \frac{j}{2} \rfloor \)), the integrand does not have residue at \(z=0\) for any value of \(l \in (1,\frac{N}{2}- \lfloor \frac{j}{2} \rfloor )\) and, therefore, we can rewrite the sum with upper limit equal to \(\frac{N}{2}\). Then, we can use the binomial theorem:

$$\begin{aligned} \frac{1}{2 \pi i} \oint _{\Gamma } dz \frac{(1+z)^{N/2}}{z^{j+1}}2^j \sum _{k=0}^{\frac{N}{2}}{N/2 \atopwithdelims ()k} \left( \frac{z^2}{4(1+z)} \right) ^k= & {} \oint _{\Gamma } dz \frac{{(1+z)^{N/2}}}{z^{j+1}}2^j \left[ \frac{(z+2)^2}{4{(1+z)}}\right] ^{\frac{N}{2}}. \end{aligned}$$

After some cancellations, we make a simple change of variables \(z\,\rightarrow \,2z'\) (\(\Gamma \rightarrow \Gamma '\)) and the integral becomes exactly the Cauchy integral representation of the binomial coefficient, so the proposition is proven.

$$\begin{aligned} d_j(N) = [d_2(2)]^{j-1} {N \atopwithdelims ()j} \end{aligned}$$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, L.F., Parisio, F. Simplest non-additive measures of quantum resources. Quantum Inf Process 20, 355 (2021). https://doi.org/10.1007/s11128-021-03297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03297-5

Keywords

Navigation