Skip to main content
Log in

Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(4p^s\) over \({\mathbb {F}}_{p^m}\)

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we establish all quantum error-correcting codes (briefly, QEC codes) from cyclic and negacyclic codes of length \(4p^s\) over \({\mathbb {F}}_{p^m}\) using CSS and Steane’s constructions. Some new QEC codes are given in the sense that their parameters are different from all the previous constructions. In addition, if we fix the length and the Hamming distance of a QEC code, some QEC codes are better than all QEC codes in the sense that their dimensions are larger than the dimensions of all the previous QEC codes. We also investigate quantum maximum distance separable (briefly, qMDS) codes from cyclic and negacyclic codes of length \(4p^s\) over finite fields using the CSS and Hermitian constructions. We provide all qMDS codes constructed from dual codes of cyclic and negacyclic codes of length \(4p^s\) over finite fields using the Hermitian construction. We also construct quantum synchronizable codes (briefly, QSCs) from cyclic codes of length \(4p^s\) over \({\mathbb {F}}_{p^m}\). To enrich the variety of available QSCs, many new QSCs are constructed to illustrate our results. Among them, there are QSCs codes with shorter lengths and much larger minimum distances than known non-primitive narrow-sense BCH codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashikhmin, A., Knill, E.: Nonbinary quantum stablizer codes. IEEE Trans. Inf. Theory. 47, 3065–3072 (2001)

    Article  MATH  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wooters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A. 54, 3824 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Berman, S.D.: Semisimple cyclic and Abelian codes. II. Kibernetika (Kiev), vol. 3, pp. 21–30 (1967)(Russian). English translation: Cybernetics vol. 3, pp. 17–23 (1967)

  4. Bouwmeester, D., Pan, J., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Bregni, S.: Synchronization of Digital Telecommunications Networks. Wiley, New York (2002)

    Book  Google Scholar 

  6. Brun, T., Devetak, I., Hsieh, H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Bush, K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23, 426–434 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1106 (1996)

    Article  ADS  Google Scholar 

  9. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castagnoli, G., Massey, J.L., Schoeller, P.A., von Seemann, N.: On repeated-root cyclic codes. IEEE Trans. Inform. Theory 37, 337–342 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process 16, 303 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inform. Theory 61, 1474–1478 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Chen, B., Dinh, H.Q., Liu, H.: Repeated-root constacyclic codes of length \(\ell p^s\) and their duals. Discrete Appl. Math. 177, 60–70 (2014). (References [13, 44] and [14, 46] are same, we have deleted the duplicate reference and renumbered accordingly. Please check and confirm.)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cleve, R., Gottesman, D.: Efficient computations of encodings for quantum error correction. Phys. Rev. A. 56, 76 (1997)

    Article  ADS  Google Scholar 

  15. Denes, J., Keedwell, A.D.: Latin Squares and Their Applications. Academic Press, New York (1974)

    MATH  Google Scholar 

  16. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Dinh, H.Q.: Constacyclic codes of length \(p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). J. Algebra 324, 940–950 (2010)

    Article  MathSciNet  Google Scholar 

  18. Dinh, H.Q.: Repeated-root constacyclic codes of length \(2p^s\). Finite Fields Appl. 18, 133–143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dinh, H.Q.: Structure of repeated-root constacyclic codes of length \(3p^s\) and their duals. Discrete Math. 313, 983–991 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S.: Negacyclic codes of length \(4p^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\) and their duals. Discrete Math. 341, 1055–1071 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S., Vo, T.M.: On \(\alpha +u\beta \)-constacyclic codes of length \(4p^s\) over \(\mathbb{F} _{p^m}+ u\mathbb{F} _{p^m}\). J. Algebra Appl. 18, 1950023 (2019)

    Article  MathSciNet  Google Scholar 

  22. Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S., Vo, T.M.: On a class of constacyclic codes of length \(4p^s\) over \(\mathbb{F}_{p^m}+ u\mathbb{F} _{p^m}\). J. Algebra Appl. 18, 1950022 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dinh, H.Q., Wang, X., Liu, H., Sriboonchitta, S.: On the Hamming Distances of Repeated-Root Constacyclic Codes of Length \(4p^s\), vol. 342, pp. 1456–1470 (2019)

  24. Dinh, H.Q., Nguyen, B.T., Yamaka, W.: Constacyclic codes of length \(3p^s\) Over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\) and their application in various distance distributions. IEEE Access 8, 204031–204056 (2020)

    Article  Google Scholar 

  25. Dinh, H.Q., Nguyen, B.T., Yamaka, W.: Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(2p^s\) Over \({\mathbb{F}}_{p^m}\). IEEE Access 8, 124608–124623 (2020)

    Article  Google Scholar 

  26. Dinh, H.Q., ElDin, R., Nguyen, B.T., Tansuchat, R.: MDS repeated-root constacyclic codes of prime power lengths over finite fields and construction of quantum MDS codes. Int. J. Theor. Phys. https://doi.org/10.1007/s10773-020-04524-y.

  27. Dinh, H.Q., ElDin, R., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic codes of length \(5p^s\) over \(\mathbb{F}_{p^m}\). Appl. Algebra Eng. Commun. Comput. (to appear)

  28. Dinh, H.Q., Le, Ha T., Nguyen, B.T., Paravee, M.: Some classes of new quantum MDS and synchronizable codes constructed from repeated-root cyclic codes of length \(6p^s\). IEEE Access (to appear)

  29. Dinh, H.Q., Nguyen, B.T., Paravee, M.: Constacyclic codes of length \(8p^s\) over \(\mathbb{F} _{p^m}+u\mathbb{F} _{p^m}\). Adv. Math. Commun. https://doi.org/10.3934/amc.2020123. ISSN: 19305346, 19305338 (2021)

  30. Dinh, H.Q., Nguyen, B.T., Abhay, S., Sriboonchitta, S.: Hamming and symbol-pair distances of repeated-root constacyclic codes of prime power lengths over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). IEEE Commun. Lett. 22, 2400–2403 (2018)

    Article  Google Scholar 

  31. Dinh, H.Q., Nguyen, B.T., Abhay, S., Sriboonchitta, S.: MDS constacyclic codes and MDS symbol-pair constacyclic codes. IEEE Access (to appear)

  32. Dinh, H.Q., Nguyen, B.T., Abhay, S., Sriboonchitta, S.: On the symbol-pair distance of repeated-root constacyclic codes of prime power lengths. IEEE Trans. Inform. Theory 64(4), 2417–2430 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S.: MDS symbol-pair codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}\). IEEE Trans. Inform. Theory 64(4), 2417–2430 (2018)

    Article  MathSciNet  Google Scholar 

  34. El-Khamy, M., McEliece, R.J.: The partition weight enumerator of MDS codes and its applications. In: Proceedings of International Symposium on Information Theory ISIT, pp. 926–930 (2005)

  35. Ezerman, M.F., Jitman, S., Kiah, M., Ling, S.: Pure asymmetric quantum MDS codes from CSS construction: a complete characterization. Int. J. Quantum Inform. 11, 1350027 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Ezerman, M.F., Jitman, S., Ling, S., Pasechnik, D.V.: CSS-like constructions of asymmetric quantum codes. IEEE Trans. Inf. Theory 59, 6732–6754 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ezerman, M.F., Ling, S., Sole, P.: Additive asymmetric quantum codes. IEEE Trans. Inf. Theory 57, 5536–5550 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fang, W., Fu, F.: Two new classes of quantum MDS codes. Finite Fields Appl. 53, 85–98 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fujiwara, Y.: Block synchronization for quantum information. Phys. Rev. A 87, 109–120 (2013)

    Article  Google Scholar 

  40. Fujiwara, Y., Tonchev, D.: High-rate self-synchronizing codes. IEEE Trans. Inf. Theory. 59, 2328–2335 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fujiwara, Y., Tonchev, D., Wong, H.: Algebraic techniques in designing quantum synchronizable codes. Phys. Rev. A 88, 162–166 (2013)

    Article  Google Scholar 

  42. Fujiwara, Y., Vandendriessche, P.: Quantum synchronizable codes from finite geometries. IEEE Trans. Inf. Theory 60, 7345–7354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inform 2, 757–766 (2004)

    Article  MATH  Google Scholar 

  44. Grassl, M., Klappenecker, A., Rotteler, M.: Graphs, quadratic forms, and quantum codes. In: Proceedings 2002 IEEE International Symposium on Information Theory, p. 45 (2002)

  45. Grassl, M., Beth, T., Geiselmann, W.: Quantum Reed–Solomon Codes, AAECC-13. Honolulu, HI, USA (1999)

  46. Grassl, M., Beth, T.: Quantum BCH codes. In: Proceedings of X. International Symposium Theoretical Electrical Engineering, pp. 207–212. Magdeburg (1999)

  47. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de (2007). Accessed 30 Nov 2020

  48. Gottesman, D.: PhD Thesis (Caltech). quantph/9705052 (1997)

  49. Golomb, S.W., Posner, E.C.: Rook domains, Latin squares, affine planes, and error-distributing codes. IEEE Trans. Inf. Theory 10, 196–208 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  50. Guardia, G.G.L.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331-1-042331–11 (2009)

  51. Guardia, G.G.L.: Asymmetric quantum Reed–Solomon and generalized Reed–Solomon codes. Quantum Inf. Process. 11, 591–604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Guardia, G.G.L.: Asymmetric quantum codes: new codes from old. Quantum Inf Process 12, 2771–2790 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hu, D., Tang, W., Zhao, M., Chen, Q., Yu, S., Oh, C.: Graphical nonbinary quantum error-correcting codes. Phys. Rev. A 78, 1–11 (2008)

    Article  Google Scholar 

  55. Ioffe, L., Mezard, M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75, 032345 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  56. Joshi, D.D.: A note on upper bounds for minimum distance codes. Inf. Control 3, 289–295 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  57. Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84, 463–471 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inform. Theory 60, 2921–2925 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inform. Theory 2, 1193–1197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kai, X., Zhu, S., Li, P.: A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 11, 5828–5834 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  63. Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. Lett. 84, 2525 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  64. Komamiya, Y.: Application of logical mathematics to information theory (Application of theory of groups to logical mathematics.). In: Proceedings of the Third Japan National Congress for Applied Mechanics, vol. 1953, pp. 437–442. . Science Council of Japan, Tokyo (1954)

  65. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  66. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)

    Article  ADS  Google Scholar 

  67. Li, Z., Xing, L.J., Wang, X.M.: Quantum generalized Reed–Solomon codes: unified framework for quantum maximum-distanceseparable codes. Phys. Rev. A 77, 1–4 (2008)

    Article  Google Scholar 

  68. Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18, 183 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  69. Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from k-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  70. Lidar, A., Brun, A.: Quantum Error Correction. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  71. Lopez-Permouth, S.R., Ozadam, H., Ozbudak, F., Szabo, S.: Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes. Finite Fields Appl. 19, 16–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Luo, L., Ma, Z.: Non-binary quantum synchronizable codes from repeated-root cyclic codes. IEEE Trans. Inform. Theory 14, 1–10 (2015)

    MATH  Google Scholar 

  73. Luo, L., Ma, Z., Lin, D.: Two new families of quantum synchronizable codes. Quantum Inf. Process. 18, 1–18 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  74. van Lint, J.H.: Repeated-root cyclic codes. IEEE Trans. Inform. Theory 37, 343–345 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  75. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 10th Impression. North-Holland, Amsterdam (1998)

    Google Scholar 

  76. Maneri, C., Silverman, R.: A combinatorial problem with applications to geometry. J. Combin. Theory Ser. A 11, 118–121 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  77. Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19, 101–110 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  78. Matthews, J.F., Politi, A., Stefanov, A., O’cBrien, J.L.: Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009)

  79. Nielsen, A., Chuang, L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  80. Ozadam, H., Ozbudak, F. The minimum Hamming distance of cyclic codes of length \(2p^s\). In: International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, pp. 92–100 (2009)

  81. Pless, V., Huffman, W.C.: Handbook of Coding Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  82. Prange, E.: Cyclic Error-Correcting Codes in Two Symbols, (September 1957), TN-57-103

  83. Polyanskiy, Y.: Asynchronous communication: exact synchronization, universality, and dispersion. IEEE Trans. Inf. Theory. 59, 1256–1270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  84. Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Experimental realization of Dicke States of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103, 020503 (2009)

    Article  ADS  Google Scholar 

  85. Radmark, M., Zukowski, M., Bourennane, M.: Experimental test of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state. Phys. Rev. Lett. 103, 150501 (2009)

    Article  ADS  Google Scholar 

  86. Rains, E.M.: Quantum weight enumerators. IEEE Trans. Inform. Theory 4, 1388–1394 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  87. Roth, R.M., Seroussi, G.: On cyclic MDS codes of length \(q\) over \({\rm GF}(q)\). IEEE Trans. Inform. Theory 32, 284–285 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  88. Roman, S.: Coding and Information Theory, GTM, vol. 134. Springer. ISBN: 0-387-97812-7 (1992)

  89. Sarı, M., Kolotoğlu, E.: A different construction for some classes of quantum MDS codes. Math. Comput. Sci. 14, 35–44 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  90. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    Article  ADS  Google Scholar 

  91. Schlingemann, D.: Stabilizer codes can be realized as graph codes. Quantum Inf. Comput. 2, 307–323 (2002)

    MathSciNet  MATH  Google Scholar 

  92. Sklar, B.: Digital Communications: Fundamentals and Applications, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  93. Silverman, R.: A metrization for power-sets with applications to combinatorial analysis. Can. J. Math. 12, 158–176 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  94. Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed–Solomon codes. Cryptogr. Commun. 10, 1165–1182 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  95. Shi, X., Yue, Q., Wu, Y.: New quantum MDS codes with large minimum distance and short length from generalized Reed–Solomon codes. Discrete Math. 342, 1989–2001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  96. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A. 52, 2493 (1995)

    Article  ADS  Google Scholar 

  97. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  98. Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45, 2492–2495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  99. Tolhuizen, G.M.: On Maximum Distance Separable codes over alphabets of arbitrary size. In: Proceedings of International Symposium on Information Theory (ISIT), p. 431 (1994)

  100. Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Tóth, G., Weinfurter, H.: Experimental entanglement of a six-photon symmetric Dicke State. Phys. Rev. Lett. 103, 020504 (2009)

    Article  ADS  Google Scholar 

  101. Wang, J., Li, R., Lv, J., Song, H.: Entanglement-assisted quantum codes from cyclic codes and negacyclic codes. Quantum Inf. Process. 5, 138 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  102. Wang, L., Zhu, S., Sun, Z.: Entanglement-assisted quantum MDS codes from cyclic codes. Quantum Inf. Process. 19, 65 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  103. Xie, Y., Yuan, J., Fujiwara, Y.: Quantum synchronizable codes from augmentation of cyclic codes. Plos One 6, e14641 (2014)

    Google Scholar 

  104. Xie, Y., Yang, L., Yuan, J.: q-Ary chain-containing quantum synchronizable codes. IEEE Commun. Lett. 20, 414–417 (2016)

    Article  Google Scholar 

  105. Yan, H.: A note on the construction of MDS self-dual codes. Cryptogr. Commun. 11, 259–268 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  106. Yao, X.C., Wang, T.X., Xu, P., Lu, H., Pan, G.S., Bao, X.H., Peng, C.Z., Lu, C.Y., Chen, Y.A., Pan, J.W.: Observation of eight-photon entanglement. Nat. Photon. 6, 225–228 (2012)

    Article  ADS  Google Scholar 

  107. Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83, 503–517 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  108. Zhou, X., Song, L., Zhang, Y.: Physical Layer Security in Wireless Communications. CRC Press Inc, Boca Raton (2013)

    Google Scholar 

Download references

Acknowledgements

H.Q. Dinh and S. Sriboonchitta are grateful to the Centre of Excellence in Econometrics, Chiang Mai University, for partial financial support. This research is partially supported by the Research Administration Centre, Chaing Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bac T. Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, H.Q., Le, H.T., Nguyen, B.T. et al. Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(4p^s\) over \({\mathbb {F}}_{p^m}\). Quantum Inf Process 20, 373 (2021). https://doi.org/10.1007/s11128-021-03306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03306-7

Keywords

Navigation