Skip to main content
Log in

Dynamics of Einstein–Podolsky–Rosen steering in Heisenberg model under decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Symmetric quantum correlations and their properties have been investigated extensively in spin chain model under decoherence. However, the asymmetric ones, e.g., Einstein–Podolsky–Rosen steering, have been attracted smaller amount of attention in this issue. In this work, we study the dynamics of Einstein–Podolsky–Rosen steering, measured by steering robustness R, for a two-qubit Heisenberg XYZ chain with inhomogeneous magnetic field by taking account of decoherence effect. The influences of magnetic field and anisotropic parameter on steering robustness are investigated for different initial states. It is found that the phenomenon of steering sudden death as well as sudden birth appears during the evolution process for particular initial states. Furthermore, the asymmetric property of Einstein–Podolsky–Rosen steering is focused and analyzed in detail. It is shown that the asymmetric steering is directly linked to the initial state as well as the external non-uniform magnetic field. Meanwhile, we find that there always exists asymmetric steering even the magnetic field is homogeneous for both the initial two-qubit pure state \(\vert 10\rangle \) and asymmetry mixed ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Alber, G., Beth, T., Horodecki, M., Horodecki, P., Horodecki, R., Rotteler, M., Weinfurter, H., Werner, R., Zeilinger, A.: Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments. World Publishing Corporation, Beijing (2004)

    MATH  Google Scholar 

  3. Plastina, F., Apollaro, T.J.G.: Local control of entanglement in a spin chain. Phys. Rev. Lett. 99, 177210 (2007)

    Article  ADS  Google Scholar 

  4. Venuti, L.C., Boschi, C.D.E., Roncaglia, M.: Long-distance entanglement in spin systems. Phys. Rev. Lett. 96, 247206 (2006)

    Article  ADS  Google Scholar 

  5. Verstraete, F., Popp, M., Cirac, J.I.: Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004)

    Article  ADS  Google Scholar 

  6. Oh, S., Wu, L.-A., Shim, Y.-P., Fei, J.J., Friesen, M., Hu, X.D.: Heisenberg spin bus as a robust transmission line for quantum-state transfer. Phys. Rev. A 84, 022330 (2011)

    Article  ADS  Google Scholar 

  7. Levy, J.: Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Lee, C.F., Johnson, N.F.: Efficient quantum computation within a disordered Heisenberg spin chain. Phys. Rev. A 70, 052322 (2004)

    Article  ADS  Google Scholar 

  9. Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)

    Article  ADS  Google Scholar 

  10. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Maziero, J., Werlang, T., Fanchini, F.F., Céleri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2009)

    Article  ADS  Google Scholar 

  14. Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    Article  ADS  Google Scholar 

  15. Al-Qasimi, A., James, D.F.V.: Sudden death of entanglement at finite temperature. Phys. Rev. A 77, 012117 (2008)

    Article  ADS  Google Scholar 

  16. Wang, J., Batelaan, H., Jeremy, P.J., Starace, A.F.: Entanglement evolution in the presence of decoherence. J. Phys. B. At. Mol. Opt. Phys. 39, 4343 (2006)

    Article  ADS  Google Scholar 

  17. Costa, A.C.S., Beims, M.W., Angelo, R.M.: Generalized discord, entanglement, Einstein–Podolsky–Rosen steering, and Bell nonlocality in twoqubit systems under (non-)Markovian channels: hierarchy of quantum resources and chronology of deaths and births. Phys. A 461, 469 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Walczak, Z.: Measurement-induced geometric measures of correlations based on the Hellinger distance and their local decoherence. Quantum Inf. Process. 18, 321 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ban, M.: Decoherence of a two-level system in a coherent superposition of two dephasing environments. Quantum Inf. Process. 19, 409 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Shi, J.D., Wang, D., Ye, L.: Revival and robustness of Bures distance discord under decoherence channels. Phys. Lett. A 380, 843 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Paulson, K.G., Panwar, E., Banerjee, S., Srikanth, R.: Hierarchy of quantum correlations under non-Markovian dynamics. Quantum Inf. Process. 20, 141 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  22. Rosales-Zárate, L., Teh, R.Y., Kiesewetter, S., Brolis, A., Ng, K., Reid, M.D.: Decoherence of Einstein–Podolsky–Rosen steering. J. Opt. Soc. Am. B 32, A82 (2015)

    Article  ADS  Google Scholar 

  23. Long, Y.M., Zhang, X., Zheng, T.Y.: Decoherence of Einstein–Podolsky–Rosen steering and the teleportation fidelity in the dynamical Casimir effect. Quantum Inf. Process. 19, 322 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Cheng, W.W., Zhou, W.Q.: Einstein–Podolsky–Rosen steering under asymmetry noise channels. Laser Phys. Lett. 18, 045201 (2021)

    Article  ADS  Google Scholar 

  25. Qin, M., Ren, Z.Z.: Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshinskii–Moriya interactions. Quantum Inf. Process. 14, 2055 (2015)

    Article  ADS  MATH  Google Scholar 

  26. Shan, C.J., Cheng, W.W., Liu, T.K., Liu, J.B., Wei, H.: Sudden death, birth and stable entanglement in a two-qubit Heisenberg XY spin chain. Chin. Phys. Lett. 25, 3115 (2008)

    Article  ADS  Google Scholar 

  27. Yang, G.H., Zhang, B.B., Li, L.: Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence. Chin. Phys. B 24, 060302 (2015)

    Article  ADS  Google Scholar 

  28. Song, L., Yang, G.H.: Quantum discord behavior about two-qubit Heisenberg XYZ model with decoherence. Chin. Phys. Lett. 31, 030304 (2014)

    Article  ADS  Google Scholar 

  29. Chen, T., Shan, C.J., Li, J.X., Liu, J.B., Liu, T.K., Huang, Y.X.: Decoherence effect in an anisotropic two-qubit Heisenberg XYZ model with inhomogeneous magnetic field. Commun. Theor. Phys. 53, 1053 (2010)

    Article  ADS  MATH  Google Scholar 

  30. Guo, J.L., Song, H.S.: Pairwise entanglement of a three-qubit Heisenberg XY chain in a nonuniform magnetic field with intrinsic decoherence. Phys. A 388, 2254 (2009)

    Article  Google Scholar 

  31. Chlih, A.A., Habiballah, N., Nassik, M.: Dynamics of quantum correlations under intrinsic decoherence in a Heisenberg spin chain model with Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 20, 92 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. Mohamed, A.B.A.: Pairwise quantum correlations of a three-qubit XY chain with phase decoherence. Quantum Inf. Process. 12, 1141 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Skrzypczyk, P., Navascués, M., Cavalcanti, D.: Quantifying Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)

    Article  ADS  Google Scholar 

  36. Cavalcanti, D., Skrzypczyk, P.: Quantum steering: a review with focus on semidefinite programming. Rep. Prog. Phys. 80, 024001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Piani, M., Watrous, J.: Necessary and sufficient quantum information characterization of Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 114, 060404 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Händchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way Einstein–Podolsky–Rosen steering. Nat. Photonics 6, 596 (2012)

    Article  ADS  Google Scholar 

  39. Bowles, J., Vértesi, T., Quintino, M.T., Brunner, N.: One-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 200402 (2014)

    Article  ADS  Google Scholar 

  40. Wollmann, S., Walk, N., Bennet, A.J., Wiseman, H.M., Pryde, G.J.: Observation of genuine one-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 116, 160403 (2016)

    Article  ADS  Google Scholar 

  41. Sun, K., Ye, X.J., Xu, J.S., Xu, X.Y., Tang, J.S., Wu, Y.C., Chen, J.L., Li, C.F., Guo, G.C.: Experimental quantification of asymmetric Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 116, 160404 (2016)

    Article  ADS  Google Scholar 

  42. Xiao, Y., Ye, X.J., Sun, K., Xu, J.S., Li, C.F., Guo, G.C.: Demonstration of multisetting one-way Einstein–Podolsky–Rosen steering in two-qubit systems. Phys. Rev. Lett. 118, 140404 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  43. Tischler, N., Ghafari, F., Baker, T.J., Slussarenko, S., Patel, R.B., Weston, M.M., Wollmann, S., Shalm, L.K., Verma, V.B., Nam, S.W., Nguyen, H.C., Wiseman, H.M., Pryde, G.J.: Conclusive experimental demonstration of one-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 121, 100401 (2018)

    Article  ADS  Google Scholar 

  44. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012)

    Article  ADS  Google Scholar 

  45. He, Q.Y., Rosales-Zárate, L., Adesso, G., Reid, M.D.: Secure continuous variable teleportation and Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 115, 180502 (2015)

    Article  ADS  Google Scholar 

  46. Chen, L., Zhang, Y.Q.: Quantum steering in magnetic Heisenberg models at finite temperature. EPL 120, 60007 (2017)

    Article  ADS  Google Scholar 

  47. Cheng, W.W., Wang, B.W.: Asymmetry quantum steering of spins in an inhomogeneous magnetic field. Laser Phys. 31, 085203 (2021)

    Article  ADS  Google Scholar 

  48. Cheng, W.W., Piilo, J.: Scaling of Einstein–Podolsky–Rosen steering in spin chains. Phys. Scr. 95, 035105 (2020)

    Article  ADS  Google Scholar 

  49. Cheng, W.W., Chen, M., Gong, L.Y., Zhao, S.M.: Quantum temporal steering in a noise channel with topological characterization. Eur. Phys. J. D 75, 75 (2021)

    Article  ADS  Google Scholar 

  50. Wang, C.X., Chen, L., Han, R.S., Zhang, Y.Q.: Quantum steering and quantum coherence in XY model with Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 19, 330 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  51. Carmichael, H.J.: Statistical Methods in Quantum Optics 1: Master Equations and Fokker–Plank Equations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

WW and BW thank the support from the Natural Science Foundation of Nanjing University of Posts and Telecommunication (Grant No. NY218005). LY and SM acknowledge the Natural Science Foundation of China (Grant No. 61871234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. W. Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W.W., Wang, B.W., Gong, L.Y. et al. Dynamics of Einstein–Podolsky–Rosen steering in Heisenberg model under decoherence. Quantum Inf Process 20, 371 (2021). https://doi.org/10.1007/s11128-021-03309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03309-4

Keywords

Navigation