Abstract
Deep learning algorithms gained prominence in analyzing images for real-time applications such as detection of objects, segmentation of instances, semantic segmentation, and classification of image scenes. However, deep learning models for image classification, such as convolutional neural networks, require extensive computational facilities. Also, training such models with multiple layers becomes complex as many trainable parameters are to be optimized. Quantum computing emerged as a research area to handle complex problems using quantum-mechanical properties for computation on a quantum computer. In this work, we primarily focus on designing a hybrid quantum-classical deep learning model for image scene classification. We propose a novel hybrid architecture that uses quantum computation for feature extraction and classical computation for scene classification. In the hybrid architecture, we use quantum measurement-based features to obtain the quantum representations of images. The obtained quantum representations of images are used to train and build a classical deep learning model for image scene classification. Our experiments performed on ibm_santiago quantum computer show that the proposed model is suitable for implementation on noisy intermediate scaled quantum computers. Our experimental results show that the proposed model can classify data efficiently using trainable parameters \(\approx \) 27–30% less than the state-of-the-art models on satellite image datasets. Hence, the complexity of training the deep learning models reduces as the number of parameters to be optimized reduces. Using the proposed architecture, the deep learning model can classify data with an overall accuracy of 95.89%, 86.13%, and 79.32% on UC Merced Land-Use, AID, and NWPU-RESISC45 datasets, respectively, for image scene classification.
















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Zou, Q., Ni, L., Zhang, T., Wang, Q.: Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12(11), 2321–2325 (2015)
Lu, X., Zheng, X., Yuan, Y.: Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci. Remote Sens. 55(9), 5148–5157 (2017)
Liu, Q., Hang, R., Song, H., Li, Z.: Learning multiscale deep features for high-resolution satellite image scene classification. IEEE Trans. Geosci. Remote Sens. 56(1), 117–126 (2018)
Zheng, X., Yuan, Y., Lu, X.: A deep scene representation for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 57(7), 4799–4809 (2019)
Gu, Y., Wang, Y., Li, Y.: A survey on deep learning-driven remote sensing image scene understanding: scene classification, scene retrieval and scene-guided object detection. Appl. Sci. 9(10), 2110 (2019)
Nogueira, K., Penatti, O.A., Dos Santos, J.A.: Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn. 61, 539–556 (2017)
Zhang, W., Tang, P., Zhao, L.: Remote sensing image scene classification using cnn-capsnet. Remote Sens. 11(5), 494 (2019)
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al.: Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195–204 (2019)
Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A.: Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote. Sens. 152, 166–177 (2019)
Paoletti, M., Haut, J., Plaza, J., Plaza, A.: Deep learning classifiers for hyperspectral imaging: a review. ISPRS J. Photogramm. Remote. Sens. 158, 279–317 (2019)
Nguyen, Q., Hein, M.: Optimization landscape and expressivity of deep cnns. In: International Conference on Machine Learning, pp. 3730–3739. PMLR (2018)
Bach, F.: Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 18(1), 629–681 (2017)
Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282 (2017)
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)
Gyongyosi, L., Imre, S.: A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71 (2019)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning (2013)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)
Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quant. Sci. Technol. 4(4), 043001 (2019)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. Europhys. Lett. 119(6), 60002 (2017)
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)
Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. NPJ Quant. Inf. 4(1), 65 (2018)
Tacchino, F., Macchiavello, C., Gerace, D., Bajoni, D.: An artificial neuron implemented on an actual quantum processor. NPJ Quant. Inf. 5(1), 26 (2019)
Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209 (2019)
Schuld, M., Petruccione, F.: Information Encoding, pp. 139–171. Springer, New York (2018)
Schuld, M.: Supervised quantum machine learning models are kernel methods. arXiv preprint arXiv:2101.11020 (2021)
García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. NPJ Quant. Inf. 6(1), 1–10 (2020)
Cai, Y., Lu, X., Jiang, N.: A survey on quantum image processing. Chin. J. Electron. 27(4), 718–727 (2018)
Xu, P., He, Z., Qiu, T., Ma, H.: Quantum image processing algorithm using edge extraction based on kirsch operator. Opt. Express 28(9), 12508–12517 (2020)
Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)
Killoran, N., Bromley, T.R., Arrazola, J.M., Schuld, M., Quesada, N., Lloyd, S.: Continuous-variable quantum neural networks. Phys. Rev. Res. 1(3), 033063 (2019)
Henderson, M., Shakya, S., Pradhan, S., Cook, T.: Quanvolutional neural networks: powering image recognition with quantum circuits. Quant. Mach. Intell. 2(1), 1–9 (2020)
Mari, A., Bromley, T.R., Izaac, J., Schuld, M., Killoran, N.: Transfer learning in hybrid classical-quantum neural networks. Quantum 4, 340 (2020)
Gyongyosi, L., Imre, S.: Training optimization for gate-model quantum neural networks. Sci. Rep. 9(1), 1–19 (2019)
Gyongyosi, L., Imre, S.: State stabilization for gate-model quantum computers. Quant. Inf. Process. 18(9), 1–22 (2019)
Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 270–279 (2010)
Xia, G.S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., Zhang, L., Lu, X.: Aid: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965–3981 (2017)
Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)
Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 5(6), 467–473 (2005)
Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Killoran, N.: Pennylane: automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 (2018)
Chollet, F., et al.: Keras: the python deep learning library, pp. ascl-1806 (2018)
Zeng, D., Liao, M., Tavakolian, M., Guo, Y., Zhou, B., Hu, D., Pietikäinen, M., Liu, L.: Deep learning for scene classification: a survey. arXiv preprint arXiv:2101.10531 (2021)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, Conference Track Proceedings, ICLR 2015, San Diego, CA, USA (2015)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
López-Cifuentes, A., Escudero-Viñolo, M., Bescós, J., García-Martín, Á.: Semantic-aware scene recognition. Pattern Recogn. 102, 107256 (2020)
Acknowledgements
This work is funded in parts by IIT Palakkad Technology IHub Foundation Doctoral Fellowship IPTIF/HRD/DF/032.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chalumuri, A., Kune, R., Kannan, S. et al. Quantum-enhanced deep neural network architecture for image scene classification. Quantum Inf Process 20, 381 (2021). https://doi.org/10.1007/s11128-021-03314-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03314-7