Skip to main content
Log in

Quantum-enhanced deep neural network architecture for image scene classification

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Deep learning algorithms gained prominence in analyzing images for real-time applications such as detection of objects, segmentation of instances, semantic segmentation, and classification of image scenes. However, deep learning models for image classification, such as convolutional neural networks, require extensive computational facilities. Also, training such models with multiple layers becomes complex as many trainable parameters are to be optimized. Quantum computing emerged as a research area to handle complex problems using quantum-mechanical properties for computation on a quantum computer. In this work, we primarily focus on designing a hybrid quantum-classical deep learning model for image scene classification. We propose a novel hybrid architecture that uses quantum computation for feature extraction and classical computation for scene classification. In the hybrid architecture, we use quantum measurement-based features to obtain the quantum representations of images. The obtained quantum representations of images are used to train and build a classical deep learning model for image scene classification. Our experiments performed on ibm_santiago quantum computer show that the proposed model is suitable for implementation on noisy intermediate scaled quantum computers. Our experimental results show that the proposed model can classify data efficiently using trainable parameters \(\approx \) 27–30% less than the state-of-the-art models on satellite image datasets. Hence, the complexity of training the deep learning models reduces as the number of parameters to be optimized reduces. Using the proposed architecture, the deep learning model can classify data with an overall accuracy of 95.89%, 86.13%, and 79.32% on UC Merced Land-Use, AID, and NWPU-RESISC45 datasets, respectively, for image scene classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  ADS  Google Scholar 

  2. Zou, Q., Ni, L., Zhang, T., Wang, Q.: Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12(11), 2321–2325 (2015)

    Article  ADS  Google Scholar 

  3. Lu, X., Zheng, X., Yuan, Y.: Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci. Remote Sens. 55(9), 5148–5157 (2017)

    Article  ADS  Google Scholar 

  4. Liu, Q., Hang, R., Song, H., Li, Z.: Learning multiscale deep features for high-resolution satellite image scene classification. IEEE Trans. Geosci. Remote Sens. 56(1), 117–126 (2018)

    Article  ADS  Google Scholar 

  5. Zheng, X., Yuan, Y., Lu, X.: A deep scene representation for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 57(7), 4799–4809 (2019)

    Article  ADS  Google Scholar 

  6. Gu, Y., Wang, Y., Li, Y.: A survey on deep learning-driven remote sensing image scene understanding: scene classification, scene retrieval and scene-guided object detection. Appl. Sci. 9(10), 2110 (2019)

    Article  Google Scholar 

  7. Nogueira, K., Penatti, O.A., Dos Santos, J.A.: Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn. 61, 539–556 (2017)

    Article  ADS  Google Scholar 

  8. Zhang, W., Tang, P., Zhao, L.: Remote sensing image scene classification using cnn-capsnet. Remote Sens. 11(5), 494 (2019)

    Article  ADS  Google Scholar 

  9. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al.: Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195–204 (2019)

    Article  ADS  Google Scholar 

  10. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A.: Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote. Sens. 152, 166–177 (2019)

    Article  ADS  Google Scholar 

  11. Paoletti, M., Haut, J., Plaza, J., Plaza, A.: Deep learning classifiers for hyperspectral imaging: a review. ISPRS J. Photogramm. Remote. Sens. 158, 279–317 (2019)

    Article  ADS  Google Scholar 

  12. Nguyen, Q., Hein, M.: Optimization landscape and expressivity of deep cnns. In: International Conference on Machine Learning, pp. 3730–3739. PMLR (2018)

  13. Bach, F.: Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 18(1), 629–681 (2017)

    MATH  Google Scholar 

  14. Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282 (2017)

  15. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)

    Article  Google Scholar 

  16. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  17. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  18. Gyongyosi, L., Imre, S.: A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71 (2019)

    Article  MathSciNet  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  20. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  ADS  Google Scholar 

  21. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning (2013)

  25. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)

    Article  ADS  Google Scholar 

  26. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quant. Sci. Technol. 4(4), 043001 (2019)

    Article  ADS  Google Scholar 

  27. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  28. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. Europhys. Lett. 119(6), 60002 (2017)

    Article  ADS  Google Scholar 

  29. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)

    Article  ADS  Google Scholar 

  30. Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. NPJ Quant. Inf. 4(1), 65 (2018)

    Article  ADS  Google Scholar 

  31. Tacchino, F., Macchiavello, C., Gerace, D., Bajoni, D.: An artificial neuron implemented on an actual quantum processor. NPJ Quant. Inf. 5(1), 26 (2019)

    Article  ADS  Google Scholar 

  32. Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209 (2019)

    Article  ADS  Google Scholar 

  33. Schuld, M., Petruccione, F.: Information Encoding, pp. 139–171. Springer, New York (2018)

    Google Scholar 

  34. Schuld, M.: Supervised quantum machine learning models are kernel methods. arXiv preprint arXiv:2101.11020 (2021)

  35. García-Pérez, G., Rossi, M.A., Maniscalco, S.: Ibm q experience as a versatile experimental testbed for simulating open quantum systems. NPJ Quant. Inf. 6(1), 1–10 (2020)

    Article  ADS  Google Scholar 

  36. Cai, Y., Lu, X., Jiang, N.: A survey on quantum image processing. Chin. J. Electron. 27(4), 718–727 (2018)

    Article  ADS  Google Scholar 

  37. Xu, P., He, Z., Qiu, T., Ma, H.: Quantum image processing algorithm using edge extraction based on kirsch operator. Opt. Express 28(9), 12508–12517 (2020)

    Article  ADS  Google Scholar 

  38. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)

    Article  Google Scholar 

  39. Killoran, N., Bromley, T.R., Arrazola, J.M., Schuld, M., Quesada, N., Lloyd, S.: Continuous-variable quantum neural networks. Phys. Rev. Res. 1(3), 033063 (2019)

    Article  Google Scholar 

  40. Henderson, M., Shakya, S., Pradhan, S., Cook, T.: Quanvolutional neural networks: powering image recognition with quantum circuits. Quant. Mach. Intell. 2(1), 1–9 (2020)

    Google Scholar 

  41. Mari, A., Bromley, T.R., Izaac, J., Schuld, M., Killoran, N.: Transfer learning in hybrid classical-quantum neural networks. Quantum 4, 340 (2020)

    Article  Google Scholar 

  42. Gyongyosi, L., Imre, S.: Training optimization for gate-model quantum neural networks. Sci. Rep. 9(1), 1–19 (2019)

    Article  Google Scholar 

  43. Gyongyosi, L., Imre, S.: State stabilization for gate-model quantum computers. Quant. Inf. Process. 18(9), 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  44. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 270–279 (2010)

  45. Xia, G.S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., Zhang, L., Lu, X.: Aid: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965–3981 (2017)

    Article  ADS  Google Scholar 

  46. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)

    Article  Google Scholar 

  47. Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Transformation of quantum states using uniformly controlled rotations. Quant. Inf. Comput. 5(6), 467–473 (2005)

    MathSciNet  MATH  Google Scholar 

  48. Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Killoran, N.: Pennylane: automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 (2018)

  49. Chollet, F., et al.: Keras: the python deep learning library, pp. ascl-1806 (2018)

  50. Zeng, D., Liao, M., Tavakolian, M., Guo, Y., Zhou, B., Hu, D., Pietikäinen, M., Liu, L.: Deep learning for scene classification: a survey. arXiv preprint arXiv:2101.10531 (2021)

  51. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, Conference Track Proceedings, ICLR 2015, San Diego, CA, USA (2015)

  52. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  53. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  54. López-Cifuentes, A., Escudero-Viñolo, M., Bescós, J., García-Martín, Á.: Semantic-aware scene recognition. Pattern Recogn. 102, 107256 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded in parts by IIT Palakkad Technology IHub Foundation Doctoral Fellowship IPTIF/HRD/DF/032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Manoj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalumuri, A., Kune, R., Kannan, S. et al. Quantum-enhanced deep neural network architecture for image scene classification. Quantum Inf Process 20, 381 (2021). https://doi.org/10.1007/s11128-021-03314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03314-7

Keywords