Skip to main content
Log in

\(n\rightarrow 1\) Quantum random access codes using single 3-level systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum random access codes (QRACs) have attracted much attention because of their different properties from random access codes. How to explore and verify optimal QRAC strategies is an important research topic in quantum cryptography. In this paper, we focus on optimal \(n\rightarrow 1\) QRACs using single 3-level systems. Here, we present a general upper bound of maximum guess probability of \(n\rightarrow 1\) QRACs using a generalized Bloch sphere representation, and the maximum guess probability is an important indicator to verify whether it is the optimal QRAC. Furthermore, the optimal \(2\rightarrow 1\) and \(3\rightarrow 1\) QRACs are obtained through analytical methods. Finally, tight upper bounds of the maximum guess probability of \(2\rightarrow 1\) and \(3\rightarrow 1\) QRACs are acquired. These results will improve QRAC-based quantum cryptography protocols, such as quantum key distributions, quantum random number generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)

    Article  Google Scholar 

  2. Brassard, G.: Brief History of Quantum Cryptography: A Personal Perspective (2005). arXiv:quant-ph/0604072v1

  3. Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J.: Quantum money. Commun. ACM 55(8), 84–92 (2012)

    Article  Google Scholar 

  4. Bennett, C.H., Wiesner, S.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)

    Article  ADS  Google Scholar 

  6. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and a lower bound for 1-way quantum automata. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (1999)

  7. PawlOwski, M., Zukowski, M.: Entanglement assisted random access codes. Phys. Rev. A 81, 042326 (2010)

    Article  ADS  Google Scholar 

  8. Tavakoli, A., Hameedi, A., Marques, B., Bourennane, M.: Quantum random access codes using single d-level systems. Phys. Rev. Lett. 114, 170502 (2015)

    Article  ADS  Google Scholar 

  9. Grudka, A., Horodecki, M., Horodecki, R., Wojcik, A.: Nonsignaling quantum random access-code boxes. Phys. Rev. A 92, 052312 (2015)

    Article  ADS  Google Scholar 

  10. Gallego, R., Brunner, N., Hadley, C., Acin, A.: Device independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105, 230501 (2010)

    Article  ADS  Google Scholar 

  11. Pawlowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302(R) (2011)

    Article  ADS  Google Scholar 

  12. Li, H.W., Yin, Z.Q., Wu, Y.C., Zou, X.B., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Semi-device-independent random-number expansion without entanglement. Phys. Rev. A 84, 034301 (2011)

    Article  ADS  Google Scholar 

  13. Li, H.W., Pawlowski, M., Yin, Z.Q., Guo, G.C., Han, Z.F.: Semi-device-independent randomness certification using \(n\rightarrow 1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012)

    Article  ADS  Google Scholar 

  14. Zhou, Y.Q., Li, H.W., Wang, Y.K., Li, D.D., Gao, F., Wen, Q.Y.: Semi-device-independent randomness expansion with partially free random sources. Phys. Rev. A 92, 022331 (2015)

    Article  ADS  Google Scholar 

  15. Zhou, Y.Q., Wang, Y.K., Li, D.D., Li, X.H., Gao, F., Wen, Q.Y.: Semi-device-independent randomness expansion with partially free random sources using 3\(\rightarrow \) 1 quantum random access code. Phys. Rev. A 94, 032318 (2016)

    Article  ADS  Google Scholar 

  16. Kollmitzer, C., Petscharnig, S., Suda, M., Mehic, M.: Quantum Random Number Generation, Quantum Science and Technology, pp. 11–34. Springer, Cham (2020)

    Book  Google Scholar 

  17. Caves, C.M., Milburn, G.J.: Qutrit entanglement. Opt. Commun. 179, 439 (2000)

    Article  ADS  Google Scholar 

  18. Bolukbai, A.T., Dereli, T.: On the \(SU(3)\) parametrization of qutrits. J. Phys. Conf. Ser. 36, 28–32 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (2020YFB1005500), NSFC (Grant Nos. 61901218, 61801126, 62002162), Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20190407, BK20200442) and China Postdoctoral Science Foundation funded Project (Grant Nos. 2018M630557, 2018T110499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qian Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YQ., Dong, YQ., Yao, QK. et al. \(n\rightarrow 1\) Quantum random access codes using single 3-level systems. Quantum Inf Process 20, 377 (2021). https://doi.org/10.1007/s11128-021-03319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03319-2

Keywords

Navigation