Abstract
Quantum random access codes (QRACs) have attracted much attention because of their different properties from random access codes. How to explore and verify optimal QRAC strategies is an important research topic in quantum cryptography. In this paper, we focus on optimal \(n\rightarrow 1\) QRACs using single 3-level systems. Here, we present a general upper bound of maximum guess probability of \(n\rightarrow 1\) QRACs using a generalized Bloch sphere representation, and the maximum guess probability is an important indicator to verify whether it is the optimal QRAC. Furthermore, the optimal \(2\rightarrow 1\) and \(3\rightarrow 1\) QRACs are obtained through analytical methods. Finally, tight upper bounds of the maximum guess probability of \(2\rightarrow 1\) and \(3\rightarrow 1\) QRACs are acquired. These results will improve QRAC-based quantum cryptography protocols, such as quantum key distributions, quantum random number generations.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)
Brassard, G.: Brief History of Quantum Cryptography: A Personal Perspective (2005). arXiv:quant-ph/0604072v1
Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J.: Quantum money. Commun. ACM 55(8), 84–92 (2012)
Bennett, C.H., Wiesner, S.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)
Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)
Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and a lower bound for 1-way quantum automata. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (1999)
PawlOwski, M., Zukowski, M.: Entanglement assisted random access codes. Phys. Rev. A 81, 042326 (2010)
Tavakoli, A., Hameedi, A., Marques, B., Bourennane, M.: Quantum random access codes using single d-level systems. Phys. Rev. Lett. 114, 170502 (2015)
Grudka, A., Horodecki, M., Horodecki, R., Wojcik, A.: Nonsignaling quantum random access-code boxes. Phys. Rev. A 92, 052312 (2015)
Gallego, R., Brunner, N., Hadley, C., Acin, A.: Device independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105, 230501 (2010)
Pawlowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302(R) (2011)
Li, H.W., Yin, Z.Q., Wu, Y.C., Zou, X.B., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Semi-device-independent random-number expansion without entanglement. Phys. Rev. A 84, 034301 (2011)
Li, H.W., Pawlowski, M., Yin, Z.Q., Guo, G.C., Han, Z.F.: Semi-device-independent randomness certification using \(n\rightarrow 1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012)
Zhou, Y.Q., Li, H.W., Wang, Y.K., Li, D.D., Gao, F., Wen, Q.Y.: Semi-device-independent randomness expansion with partially free random sources. Phys. Rev. A 92, 022331 (2015)
Zhou, Y.Q., Wang, Y.K., Li, D.D., Li, X.H., Gao, F., Wen, Q.Y.: Semi-device-independent randomness expansion with partially free random sources using 3\(\rightarrow \) 1 quantum random access code. Phys. Rev. A 94, 032318 (2016)
Kollmitzer, C., Petscharnig, S., Suda, M., Mehic, M.: Quantum Random Number Generation, Quantum Science and Technology, pp. 11–34. Springer, Cham (2020)
Caves, C.M., Milburn, G.J.: Qutrit entanglement. Opt. Commun. 179, 439 (2000)
Bolukbai, A.T., Dereli, T.: On the \(SU(3)\) parametrization of qutrits. J. Phys. Conf. Ser. 36, 28–32 (2006)
Acknowledgements
This work is supported by National Key R&D Program of China (2020YFB1005500), NSFC (Grant Nos. 61901218, 61801126, 62002162), Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20190407, BK20200442) and China Postdoctoral Science Foundation funded Project (Grant Nos. 2018M630557, 2018T110499).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhou, YQ., Dong, YQ., Yao, QK. et al. \(n\rightarrow 1\) Quantum random access codes using single 3-level systems. Quantum Inf Process 20, 377 (2021). https://doi.org/10.1007/s11128-021-03319-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03319-2