Abstract
This work presents the mapping of the traveling salesperson problem (TSP) based in pseudo-Boolean constraints to a graph of the D-Wave Systems Inc. We first formulate the problem as a set of constraints represented in propositional logic and then resort to the SATyrus approach to convert the set of constraints to an energy minimization problem. Next, we transform the formulation to a quadratic unconstrained binary optimization problem (QUBO) and solve the problem using different approaches: (a) classical QUBO using simulated annealing in a von Neumann machine, (b) QUBO in a simulated quantum environment, (c) QUBO using the D-Wave quantum machine. Moreover, we study the amount of time and execution time reduction we can achieve by exploring approximate solutions using the three approaches. Results show that for every graph size tested with the number of nodes less than or equal to 7, we can always obtain at least one optimal solution. In addition, the D-Wave machine can find optimal solutions more often than its classical counterpart for the same number of iterations and number of repetitions. Execution times, however, can be some orders of magnitude higher than the classical or simulated approaches for small graphs. For a higher number of nodes, the average execution time to find the first optimal solution in the quantum machine is 26% (\(n = 6\)) and 47% (\(n = 7\)) better than the classical.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 1 (2018)
Ayanzadeh, R., Halem, M., Finin, T.: Reinforcement quantum annealing: a hybrid quantum learning automata. Sci. Rep. 10(1), 7952 (2020)
Bernal, D.E., Booth, K.E.C., Dridi, R., Alghassi, H., Tayur, S., Venturelli, D.: Integer programming techniques for minor-embedding in quantum annealers. In: Hebrard, E., Musliu, N. (eds.) Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pp. 112–129. Springer, Cham (2020)
Booth, K.E.C., O’Gorman, B., Marshall, J., Hadfield, S., Rieffel, E.: Quantum-accelerated global constraint filtering. In: Simonis, H. (ed.) Principles and Practice of Constraint Programming, pp. 72–89. Springer, Cham (2020)
Boothby, K., Bunyk, P., Raymond, J., Roy, A.: Next-generation topology of D-wave quantum processors. arXiv e-prints arXiv:2003.00133 (2020)
Borowski, M., Gora, P., Karnas, K., Błajda, M., Król, K., Matyjasek, A., Burczyk, D., Szewczyk, M., Kutwin, M.: New hybrid quantum annealing algorithms for solving vehicle routing problem. In: Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.) Computational Science - ICCS 2020, pp. 546–561. Springer, Cham (2020)
Dai, S.: A note on implication operators of quantum logic. Quantum Mach. Intell. 2(2), 15 (2020)
Dattani, N., Chancellor, N.: Embedding quadratization gadgets on chimera and pegasus graphs. arXiv:1901.07676 (2019)
Djidjev, H.N., Chapuis, G., Hahn, G., Rizk, G.: Efficient combinatorial optimization using quantum annealing. arXiv:1801.08653 (2018)
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv e-prints pp quant–ph/0001106 (2000)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)
Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)
Hu, F., Lamata, L., Sanz, M., Chen, X., Chen, X., Wang, C., Solano, E.: Quantum computing cryptography: finding cryptographic Boolean functions with quantum annealing by a 2000 qubit d-wave quantum computer. Phys. Lett. A 384(10), 126214 (2020)
Hussain, H., Javaid, M.B., Khan, F.S., Dalal, A., Khalique, A.: Optimal control of traffic signals using quantum annealing. Quantum Inf. Process. 19(9), 312 (2020)
Inc DWS. D-wave. https://www.dwavesys.com (2020)
Inc DWS. Leap. https://cloud.dwavesys.com/leap/ (2020)
Jalowiecki, K., Wieckowski, A., Gawron, P., Gardas, B.: Parallel in time dynamics with quantum annealers. Sci. Rep. 10(1), 13534 (2020)
Li, R.Y., Di Felice, R., Rohs, R., Lidar, D.A.: Quantum annealing versus classical machine learning applied to a simplified computational biology problem. npj Quantum Inf. 4(1), 14 (2018)
Lima, P.M.V., Pereira, G.C., Morveli-Espinoza, M.M.M., França, F.M.G.: Mapping and combining combinatorial problems into energy landscapes via pseudo-Boolean constraints. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) Brain Vis. Artif. Intell., pp. 308–317. Springer, Berlin (2005)
Lucas, A.: Ising formulations of many np problems. Front. Phys. 2 (2014)
Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)
Mańdziuk, J.: Solving the travelling salesman problem with a hopfield-type neural network. Demonstr. Math. 29(1), 219–232 (1996)
Martoňák, R., Santoro, G.E., Tosatti, E.: Quantum annealing of the traveling-salesman problem. Phys. Rev. E 70(5) (2004)
McGeoch, C.C.: Theory versus practice in annealing-based quantum computing. Theor. Comput. Sci. 816, 169–183 (2020)
Mishra, A., Albash, T., Lidar, D.A.: Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability. Nat. Commun. 9(1), 2917 (2018)
Negre, C.F., Ushijima-Mwesigwa, H., Mniszewski, S.M.: Detecting multiple communities using quantum annealing on the d-wave system. PLoS ONE 15(2), e0227538 (2020)
Nimbe, P., Weyori, B.A., Adekoya, A.F.: Models in quantum computing: a systematic review. Quantum Inf. Process. 20(2), 80 (2021)
Ohzeki, M.: Breaking limitation of quantum annealer in solving optimization problems under constraints. Sci. Rep. 10(1), 3126 (2020)
Okada, S., Ohzeki, M., Terabe, M., Taguchi, S.: Improving solutions by embedding larger subproblems in a d-wave quantum annealer. Sci. Rep. 9(1), 1–10 (2019)
Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131(1), 259–282 (2004)
Pastorello, D., Blanzieri, E.: Quantum annealing learning search for solving qubo problems. Quantum Inf. Process. 18(10), 303 (2019)
Pearson, A., Mishra, A., Hen, I., Lidar, D.A.: Analog errors in quantum annealing: doom and hope. NPJ Quantum Inf. 5, 1–9 (2019)
Potvin, J.Y.: State-of-the-art survey-the traveling salesman problem: a neural network perspective. ORSA J. Comput. 5(4), 328–348 (1993)
Raymond, J., Ndiaye, N., Rayaprolu, G., King, A.D.: Improving performance of logical qubits by parameter tuning and topology compensation. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (2020)
Reichardt, B.W.: The quantum adiabatic optimization algorithm and local minima. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, NY, USA, STOC’04, pp. 502–510 (2004)
Silva, C., Dutra, I.: Code [available]. https://github.com/cmaps/tsp-quantumannealing (2020)
Silva, C., Aguiar, A., Lima, P.M.V., Dutra, I.: Mapping graph coloring to quantum annealing. Quantum Mach. Intell. 2(2), 16 (2020)
Srinivasan, K., Satyajit, S., Behera, B.K., Panigrahi, P.K.: Efficient quantum algorithm for solving travelling salesman problem: an ibm quantum experience. arXiv:1805.10928 (2018)
Streif, M., Neukart, F., Leib, M.: Solving quantum chemistry problems with a d-wave quantum annealer. In: International Workshop on Quantum Technology and Optimization Problems. Springer, pp. 111–122 (2019)
Tan, K., Tang, H., Ge, S.: On parameter settings of hopfield networks applied to traveling salesman problems. IEEE Trans. Circuits Syst. I Regul. Pap. 52(5), 994–1002 (2005)
Wang, C., Chen, H., Jonckheere, E.: Quantum versus simulated annealing in wireless interference network optimization. Sci. Rep. 6(1), 25797 (2016)
Warren, R.H.: Solving the traveling salesman problem on a quantum annealer. SN Appl. Sci. 2(1), 75 (2019)
Zaman, M., Tanahashi, K., Tanaka, S.: Pyqubo: python library for mapping combinatorial optimization problems to qubo form. arXiv:2103.01708 (2021)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Silva, C., Aguiar, A., Lima, P.M.V. et al. Mapping a logical representation of TSP to quantum annealing. Quantum Inf Process 20, 386 (2021). https://doi.org/10.1007/s11128-021-03321-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03321-8