Abstract
Complex numbers are indispensable parts of describing states of quantum systems and their dynamic behavior, and they are widely used in classical and quantum physics. In recent years, some studies and experiments have shown the necessity of complex numbers in quantum physics. In this work, we investigate the quantification of imaginarity and explore connections of several properties of imaginary measures. In addition, we focus on two specific imaginarity measures: the weight of imaginarity and the relative entropy of imaginarity, proving that they have some nice properties. We also study the corresponding semidefinite programming form of the weight of imaginarity and obtain a closed expression of the relative entropy of imaginarity. Moreover, we analyze the quantitative relationships of several imaginarity measures. Our work further studies the quantification of imaginarity, and provides two concrete measures with interesting properties for imaginarity, which will contribute to the development of quantum mechanics and quantum technology.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Brandão, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)
Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Li, P., Luo, Y., Li, Y.M.: Distillability for non-full-rank coherent states in the probabilistic framework. Quantum Inf. Process. 19, 374 (2020)
Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics—a topical review. J. Phys. A 49, 143001 (2016)
Lostaglio, M.: An introductory review of the resource theory approach to thermodynamics. Rep. Prog. Phys. 82, 114001 (2019)
Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)
Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)
Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013)
Marvian, I., Spekkens, R.W.: Extending Noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)
del Rio, L., Kraemer, L., Renner, R.: Resource theories of knowledge. arXiv:1511.08818 (2015)
Howard, M., Campbell, E.T.: Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017)
Ahmadi, M., Dang, H.B., Gour, G., Sanders, B.C.: Quantification and manipulation of magic states. Phys. Rev. A 97, 062332 (2018)
Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 062104 (2003)
Gour, G., Müller, M.P., Narasimhachar, V., Spekkens, R.W., Yunger Halpern, N.: The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1 (2015)
Streltsov, A., Kampermann, H., Wölk, S., Gessner, M., Bruß, D.: Maximal coherence and the resource theory of purity. New J. Phys. 20, 053058 (2018)
Wootters, W.K.: Entanglement sharing in real-vector-space quantum theory. Found. Phys. 42, 19 (2012)
Hardy, L., Wootters, W.K.: Limited holism and real-vector-space quantum theory. Found. Phys. 42, 454 (2012)
Aleksandrova, A., Borish, V., Wootters, W.K.: Real-vector-space quantum theory with a universal quantum bit. Phys. Rev. A 87, 052106 (2013)
Hickey, A., Gour, G.: Quantifying the imaginarity of quantum mechanics. J. Phys. A: Math. Theor. 51, 414009 (2018)
Wu, K.-D., Kondra, T.V., Rana, S., Scandolo, C.M., Xiang, G.-Y., Li, C.-F., Guo, G.-C., Streltsov, A.: Operational resource theory of imaginarity. Phys. Rev. Lett. 126, 090401 (2021)
Wu, K.-D., Kondra, T.V., Rana, S., Scandolo, C.M., Xiang, G.-Y., Li, C.-F., Guo, G.-C., Streltsov, A.: Resource theory of imaginarity: quantification and state conversion. Phys. Rev. A 103, 032401 (2021)
Lewenstein, M., Sanpera, A.: Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80, 2261 (1998)
Skrzypczyk, P., Navascués, M., Cavalcanti, D.: Quantifying Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)
Pusey, M.F.: Verifying the quantumness of a channel with an untrusted device. J. Opt. Soc. Am. B 32, A56 (2015)
Cavalcanti, D., Skrzypczyk, P.: Quantitative relations between measurement incompatibility, quantum steering, and nonlocality. Phys. Rev. A 93, 052112 (2016)
Ducuara, A.F., Skrzypczyk, P.: Operational interpretation of weight-based resource quantifiers in convex quantum resource theories. Phys. Rev. Lett. 125, 110401 (2020)
Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97, 032342 (2018)
Regula, B., Takagi, R.: Fundamental limitations on quantum channel manipulation. arXiv:2010.11942 (2020)
Yu, X.-D., Zhang, D.-J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49 (1996)
Watrous, J.: Semidefinite programs for completely bounded norms. Theory Comput. 5, 217 (2009)
Xu, J., Shao, L.-H., Fei, S.-M.: Coherence measures with respect to general quantum measurements. Phys. Rev. A 102, 012411 (2020)
Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147 (1975)
Ruskai, M.B.: Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. (N.Y.) 43, 4358 (2002)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)
Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)
Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)
Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)
Acknowledgements
This paper was supported by Fundamental Research Funds for the Central Universities (Grant No.: GK201703002) and National Science Foundation of China (Grant Nos.: 12071271, 11671244).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xue, S., Guo, J., Li, P. et al. Quantification of resource theory of imaginarity. Quantum Inf Process 20, 383 (2021). https://doi.org/10.1007/s11128-021-03324-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03324-5