Skip to main content
Log in

Practical decoy-state quantum private queries against joint-measurement attack under weak coherent pulse sources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum-key-distribution (QKD)-based quantum private queries (QPQs) are the most practical protocols for the symmetrically private information retrieval problem. But these protocols cannot resist joint-measurement (JM) attack. Recently, Wei et al. proposed a QPQ protocol with good performance in resisting JM attack (RJM-QPQ) (Phys. Rev. A 93, 042318 (2016)). However, due to the imperfections of ideal single-photon source, one has to consider the security of this protocol under weak coherent pulses sources (WCPS). In this paper, after analyzing the security loophole of RJM-QPQ protocol under WCPS, we propose a QPQ protocol with decoy-state method (DS-QPQ). Compared to the RJM-QPQ protocol, DS-QPQ has better performance under WCPS. It can also resist the JM attack. Furthermore, it improves database security, user privacy and efficiency. Moreover, DS-QPQ retains the good characters of QKD-based QPQs, e.g., it is loss tolerant and robust against quantum memory attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  2. Kushilevitz, E., Ostrovsky, R.: In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, p. 364. IEEE, New York (1997)

  3. Gentner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60, 592 (2000)

    Article  MathSciNet  Google Scholar 

  4. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, p. 41. IEEE, New York (1995)

  5. Shor, P.W.: In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, p. 124. Piscataway, IEEE (1994)

  6. Grover, L.K.: In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, p. 212. ACM, New York (1996)

  7. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  9. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  10. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  11. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  12. Tang, Z.Y., Liao, Z.F., Xu, F.H., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)

    Article  ADS  Google Scholar 

  13. Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012)

    Article  ADS  Google Scholar 

  14. PandurangaRao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A 87, 012331 (2013)

    Article  ADS  Google Scholar 

  15. Zhang, J.L., Guo, F.Z., Gao, F., Liu, B., Wen, Q.Y.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)

    Article  ADS  Google Scholar 

  16. Yang, Y.G., Sun, S.J., Xu, P., Tiang, J.: Flexible protocol for quantum private query based on b92 protocol. Quant. Info. Proc. 13, 805 (2014)

    Article  MathSciNet  Google Scholar 

  17. Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state bennett-brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)

    Article  Google Scholar 

  18. Chan, P., Lucio-Martinez, I., Mo, X., Simon, C., Tittel, W.: Performing private database queries in a real-world environment using a quantum protocol. Sci. Rep. 4, 5233 (2014)

    Article  ADS  Google Scholar 

  19. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Article  Google Scholar 

  20. Liu, B., Gao, F., Huang, W.: Qkd-based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  21. Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  22. Niederberger, A., Scarani, V., Gisin, N.: Photon-number-splitting versus cloning attacks in practical implementations of the bennett-brassard 1984 protocol for quantum cryptography. Phys. Rev. A 71, 042316 (2005)

    Article  ADS  Google Scholar 

  23. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44 (2002)

    Article  ADS  Google Scholar 

  24. Wei, C.Y., Cai, X.Q., Liu, B., Wang, T., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2 (2018)

    Article  MathSciNet  Google Scholar 

  25. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  26. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Lo, H.K., Curty, M., Qi, B.: Measurement-deviceindependent Quantum key Distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  28. Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57, 160 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. Maitra, A., Paul, G., Roy, S.: Device-independent quantum private query. Phys. Rev. A 95, 042344 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 62171056,61973021), the Natural Science Basic Research Program of Shaanxi (Program No.2021JM-464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen-Zhuo Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Guo, FZ. & Wen, QY. Practical decoy-state quantum private queries against joint-measurement attack under weak coherent pulse sources. Quantum Inf Process 20, 392 (2021). https://doi.org/10.1007/s11128-021-03329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03329-0

Keywords

Navigation