Skip to main content
Log in

Geometrical description of the dynamics of entangled two-qubit states under \(U(2) \times U(2)\) local unitary operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We realize the second Hopf fibration for a two-qubit system without using the quaternionic language. In this respect, we explore the geometrical features emerging from this Hopf fibration. Further, we investigate the metric tensor and the SO(4) non-abelian gauge field defined on the \(S^4\)-base in terms of the entanglement quantified by the Wootters concurrence on the associated Hopf bundle. Finally, by transforming an entangled two-qubit state in the Schmidt form, we examine the different quantum phases acquired by this state under \(U(2) \times U(2)\) local unitary operations in relation to the entanglement as well as the geometry of the corresponding state manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pati, A.K.: Relation between “phases” and “distance” in quantum evolution. Phys. Lett. A 159, 105–112 (1991). https://doi.org/10.1016/0375-9601(91)90255-7

  2. Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C.: Optimal control, geometry, and quantum computing. Phys. Rev. A 73, 062323 (2006). https://doi.org/10.1103/PhysRevA.73.062323

    Article  MathSciNet  ADS  Google Scholar 

  3. Frydryszak, A.M., Tkachuk, V.M.: Quantum brachistochrone problem for a spin-1 system in a magnetic field. Phys. Rev. A 77, 014103 (2008). https://doi.org/10.1103/PhysRevA.77.014103

    Article  ADS  Google Scholar 

  4. Slaoui, A., Daoud, M., Laamara, R.A.: The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study. Quantum Inf. Process 17, 1–24 (2018). https://doi.org/10.1007/s11128-018-1942-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Brody, D.C., Gibbons, G.W., Meier, D.M.: Time-optimal navigation through quantum wind. New J. Phys 17, 033048 (2015). https://doi.org/10.1088/1367-2630/17/3/033048

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Pati, A.K.: Geometric phase, geometric distance and length of the curve in quantum evolution. J. Phys. A Math. Gen. 25, L1001 (1992). https://doi.org/10.1088/0305-4470/25/16/003

    Article  MathSciNet  ADS  Google Scholar 

  7. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: an Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  8. Zanardi, P., Giorda, P., Cozzini, M.: Information-theoretic differential geometry of quantum phase transitions. Phys. Rev. Lett. 99, 100603 (2007). https://doi.org/10.1103/PhysRevLett.99.100603

    Article  MATH  ADS  Google Scholar 

  9. Kuzmak, A.R.: Geometry of quantum state manifolds generated by the Lie algebra operators. J. Geom. Phys. 126, 1–6 (2018). https://doi.org/10.1016/j.geomphys.2018.01.007

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Abe, S.: Quantized geometry associated with uncertainty and correlation. Phys. Rev. A 48, 4102 (1993). https://doi.org/10.1103/PhysRevA.48.4102

    Article  ADS  Google Scholar 

  11. Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990). https://doi.org/10.1103/PhysRevLett.65.1697

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Abe, S.: Quantum-state space metric and correlations. Phys. Rev. A 46, 1667 (1992). https://doi.org/10.1103/PhysRevA.46.1667

    Article  ADS  Google Scholar 

  13. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007). https://doi.org/10.1103/PhysRevLett.98.040403

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Brody, D.C., Hook, D.W.: On optimum Hamiltonians for state transformations. J. Phys. A Math. Gen. 39, L167 (2006). https://doi.org/10.1088/0305-4470/39/11/L02

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett. 96, 060503 (2006). https://doi.org/10.1103/PhysRevLett.96.060503

    Article  MATH  ADS  Google Scholar 

  16. Kuzmak, A.R., Tkachuk, V.M.: The quantum brachistochrone problem for an arbitrary spin in a magnetic field. Phys. Lett. A 379, 1233–1239 (2015). https://doi.org/10.1016/j.physleta.2015.03.003

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Divincenzo, D.P.: Quantum gates and circuits. Proc. Math. Phys. Eng. Sci 454, 261–276 (1998). https://doi.org/10.1098/rspa.1998.0159

    Article  MathSciNet  MATH  Google Scholar 

  18. Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C.: Quantum computation as geometry. Science 311, 1133–1135 (2006). https://doi.org/10.1126/science.1121541

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Anandan, J.: A geometric approach to quantum mechanics. Found. Phys. 21, 1265–1284 (1991). https://doi.org/10.1007/BF00732829

    Article  MathSciNet  ADS  Google Scholar 

  20. Carinena, J.F., Clemente-Gallardo, J., Marmo, G.: Geometrization of quantum mechanics. Theor. Math. Phys. 152, 894–903 (2007). https://doi.org/10.1007/s11232-007-0075-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Kibble, T.W.B.: Geometrization of quantum mechanics. Commun. Math. Phys. 65, 189–201 (1979). https://doi.org/10.1007/BF01225149

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19–53 (2001). https://doi.org/10.1016/S0393-0440(00)00052-8

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Chruscinski, D.: Geometric aspects of quantum mechanics and quantum entanglement. Commun. Math. Phys. 30, 9 (2006). https://doi.org/10.1088/1742-6596/30/1/002

    Article  Google Scholar 

  24. Leinaas, J.M., Myrheim, J., Ovrum, E.: Geometrical aspects of entanglement. Phys. Rev. A 74, 012313 (2006). https://doi.org/10.1103/PhysRevA.74.012313

    Article  MathSciNet  ADS  Google Scholar 

  25. Kuzmak, A.R.: Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction. J. Phys. A Math. Theor. 51, 175305 (2018). https://doi.org/10.1088/1751-8121/aab6f8

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Levay, P.: The geometry of entanglement: metrics, connections and the geometric phase. J. Phys. A Math. Gen. 37, 1821 (2004). https://doi.org/10.1088/0305-4470/37/5/024

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). https://doi.org/10.1103/PhysRevLett.80.2245

    Article  MATH  ADS  Google Scholar 

  28. Amghar, B., Daoud, M.: Geometrical aspects and quantum brachistochrone problem for a collection of \(N\) spin\(-s\) system with long-range Ising-type interaction. Phys. Lett. A 384, 126682 (2020). https://doi.org/10.1016/j.physleta.2020.126682

    Article  MathSciNet  MATH  Google Scholar 

  29. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. Math. Phys. Eng. Sci. 392, 45–57 (1984). https://doi.org/10.1098/rspa.1984.0023

    Article  MathSciNet  MATH  Google Scholar 

  30. Pati, A.K.: Geometric aspects of noncyclic quantum evolutions. Phys. Rev. A 52, 2576 (1995). https://doi.org/10.1103/PhysRevA.52.2576

    Article  MathSciNet  ADS  Google Scholar 

  31. Mukunda, N., Simon, R.: Quantum kinematic approach to the geometric phase. I. General formalism. Ann. Phys. 228, 205–268 (1993). https://doi.org/10.1006/aphy.1993.1093

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Oxman, L.E., Khoury, A.Z.: Fractional topological phase for entangled qudits. Phys. Rev. Lett. 106, 240503 (2011). https://doi.org/10.1103/PhysRevLett.106.240503

    Article  ADS  Google Scholar 

  33. Khoury, A.Z., Oxman, L.E.: Topological phase structure of entangled qudits. Phys. Rev. A 89, 032106 (2014). https://doi.org/10.1103/PhysRevA.89.032106

    Article  ADS  Google Scholar 

  34. Khoury, A.Z., Oxman, L.E., Marques, B., Matoso, A., Pádua, S.: Fractional topological phase on spatially encoded photonic qudits. Phys. Rev. A 87, 042113 (2013). https://doi.org/10.1103/PhysRevA.87.042113

    Article  ADS  Google Scholar 

  35. Bullock, S.S., O’Leary, D.P., Brennen, G.K.: Asymptotically optimal quantum circuits for d-level systems. Phys. Rev. Lett. 94, 230502 (2005). https://doi.org/10.1103/PhysRevLett.94.230502

  36. Ionicioiu, R., Spiller, T.P., Munro, W.J.: Generalized Toffoli gates using qudit catalysis. Phys. Rev. A 80, 012312 (2009). https://doi.org/10.1103/PhysRevA.80.012312

    Article  MathSciNet  ADS  Google Scholar 

  37. Xiang-Bin, W., Keiji, M.: Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001). https://doi.org/10.1103/PhysRevLett.87.097901

    Article  ADS  Google Scholar 

  38. Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000). https://doi.org/10.1038/35002528

    Article  ADS  Google Scholar 

  39. Sjöqvist, E., Pati, A.K., Ekert, A., Anandan, J.S., Ericsson, M., Oi, D.K., Vedral, V.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845 (2000). https://doi.org/10.1103/PhysRevLett.85.2845

    Article  ADS  Google Scholar 

  40. Zhu, S.L., Wang, Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002). https://doi.org/10.1103/PhysRevLett.89.097902

    Article  ADS  Google Scholar 

  41. Ekert, A., Ericsson, M., Hayden, P., Inamori, H., Jones, J.A., Oi, D.K., Vedral, V.: Geometric quantum computation. J. Modern Opt. 47, 2501–2513 (2000). https://doi.org/10.1080/09500340008232177

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. Bernevig, B., Chen, H.: Geometry of the three-qubit state, entanglement and division algebras. J. Phys. A Math. Gen. 36, 8325 (2003). https://doi.org/10.1088/0305-4470/36/30/309

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Mosseri, R.: Two-qubit and three-qubit geometry and Hopf fibrations. Topol. Condens. Matter (2009). https://doi.org/10.1007/3-540-31264-1_9

    Article  MATH  Google Scholar 

  44. Landi, G., Pagani, C., Reina, C.: A Hopf bundle over a quantum four-sphere from the symplectic group. Commun. Math. Phys. 263, 65–88 (2006). https://doi.org/10.1007/s00220-005-1494-3

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. Mosseri, R., Dandoloff, R.: Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A Math. Gen. 34, 10243 (2001). https://doi.org/10.1088/0305-4470/34/47/324

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Milman, P.: Phase dynamics of entangled qubits. Phys. Rev. A 73, 062118 (2006). https://doi.org/10.1103/PhysRevA.73.062118

    Article  MathSciNet  ADS  Google Scholar 

  47. Hasebe, K.: Hopf maps, lowest Landau level, and fuzzy spheres. Symmetry Integr. Geom. Methods Appl. 6, 071 (2010). https://doi.org/10.3842/SIGMA.2010.071

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, W.M.: Quantum nonintegrability in finite systems. Phys. Rep. 252, 1–100 (1995). https://doi.org/10.1016/0370-1573(94)00081-D

    Article  MathSciNet  ADS  Google Scholar 

  49. Coşkun, Ü.H., Kürkçüoğlu, S., Toga, G.C.: Quantum Hall effect on odd spheres. Phys. Rev. D 95, 065021 (2017). https://doi.org/10.1103/PhysRevD.95.065021

    Article  MathSciNet  ADS  Google Scholar 

  50. Demler, E., Zhang, S.C.: Non-Abelian holonomy of BCS and SDW quasiparticles. Ann. Phys. 271, 83–119 (1999). https://doi.org/10.1006/aphy.1998.5866

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Nakahara, M.: Geometry, Topology and Physics. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  52. Xi, W., Ku, W.: Hunting down magnetic monopoles in two-dimensional topological insulators and superconductors. Phys. Rev. B 100, 121201 (2019). https://doi.org/10.1103/PhysRevB.100.121201

    Article  ADS  Google Scholar 

  53. Botero, A.: Geometric phase and modulus relations for probability amplitudes as functions on complex parameter spaces. J. Math. Phys. 44, 5279–5295 (2003). https://doi.org/10.1063/1.1612895

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. Kolodrubetz, M., Gritsev, V., Polkovnikov, A.: Classifying and measuring geometry of a quantum ground state manifold. Phys. Rev. B 88, 064304 (2013). https://doi.org/10.1103/PhysRevB.88.064304

    Article  ADS  Google Scholar 

  55. Ekert, A., Knight, P.L.: Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63, 415–423 (1995). https://doi.org/10.1119/1.17904

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Peres, A.: Quantum Theory: Concepts and Methods, vol. 57. Springer, Berlin (2002). https://doi.org/10.1007/0-306-47120-5

    Book  MATH  Google Scholar 

  57. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987). https://doi.org/10.1103/PhysRevLett.58.1593

    Article  MathSciNet  ADS  Google Scholar 

  58. Pati, A.K.: New derivation of the geometric phase. Phys. Lett. A 202, 40–45 (1995). https://doi.org/10.1016/0375-9601(95)00299-I

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Amghar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amghar, B., Daoud, M. Geometrical description of the dynamics of entangled two-qubit states under \(U(2) \times U(2)\) local unitary operations. Quantum Inf Process 20, 389 (2021). https://doi.org/10.1007/s11128-021-03341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03341-4

Keywords