Abstract
We realize the second Hopf fibration for a two-qubit system without using the quaternionic language. In this respect, we explore the geometrical features emerging from this Hopf fibration. Further, we investigate the metric tensor and the SO(4) non-abelian gauge field defined on the \(S^4\)-base in terms of the entanglement quantified by the Wootters concurrence on the associated Hopf bundle. Finally, by transforming an entangled two-qubit state in the Schmidt form, we examine the different quantum phases acquired by this state under \(U(2) \times U(2)\) local unitary operations in relation to the entanglement as well as the geometry of the corresponding state manifold.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Pati, A.K.: Relation between “phases” and “distance” in quantum evolution. Phys. Lett. A 159, 105–112 (1991). https://doi.org/10.1016/0375-9601(91)90255-7
Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C.: Optimal control, geometry, and quantum computing. Phys. Rev. A 73, 062323 (2006). https://doi.org/10.1103/PhysRevA.73.062323
Frydryszak, A.M., Tkachuk, V.M.: Quantum brachistochrone problem for a spin-1 system in a magnetic field. Phys. Rev. A 77, 014103 (2008). https://doi.org/10.1103/PhysRevA.77.014103
Slaoui, A., Daoud, M., Laamara, R.A.: The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study. Quantum Inf. Process 17, 1–24 (2018). https://doi.org/10.1007/s11128-018-1942-6
Brody, D.C., Gibbons, G.W., Meier, D.M.: Time-optimal navigation through quantum wind. New J. Phys 17, 033048 (2015). https://doi.org/10.1088/1367-2630/17/3/033048
Pati, A.K.: Geometric phase, geometric distance and length of the curve in quantum evolution. J. Phys. A Math. Gen. 25, L1001 (1992). https://doi.org/10.1088/0305-4470/25/16/003
Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: an Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)
Zanardi, P., Giorda, P., Cozzini, M.: Information-theoretic differential geometry of quantum phase transitions. Phys. Rev. Lett. 99, 100603 (2007). https://doi.org/10.1103/PhysRevLett.99.100603
Kuzmak, A.R.: Geometry of quantum state manifolds generated by the Lie algebra operators. J. Geom. Phys. 126, 1–6 (2018). https://doi.org/10.1016/j.geomphys.2018.01.007
Abe, S.: Quantized geometry associated with uncertainty and correlation. Phys. Rev. A 48, 4102 (1993). https://doi.org/10.1103/PhysRevA.48.4102
Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990). https://doi.org/10.1103/PhysRevLett.65.1697
Abe, S.: Quantum-state space metric and correlations. Phys. Rev. A 46, 1667 (1992). https://doi.org/10.1103/PhysRevA.46.1667
Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007). https://doi.org/10.1103/PhysRevLett.98.040403
Brody, D.C., Hook, D.W.: On optimum Hamiltonians for state transformations. J. Phys. A Math. Gen. 39, L167 (2006). https://doi.org/10.1088/0305-4470/39/11/L02
Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett. 96, 060503 (2006). https://doi.org/10.1103/PhysRevLett.96.060503
Kuzmak, A.R., Tkachuk, V.M.: The quantum brachistochrone problem for an arbitrary spin in a magnetic field. Phys. Lett. A 379, 1233–1239 (2015). https://doi.org/10.1016/j.physleta.2015.03.003
Divincenzo, D.P.: Quantum gates and circuits. Proc. Math. Phys. Eng. Sci 454, 261–276 (1998). https://doi.org/10.1098/rspa.1998.0159
Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C.: Quantum computation as geometry. Science 311, 1133–1135 (2006). https://doi.org/10.1126/science.1121541
Anandan, J.: A geometric approach to quantum mechanics. Found. Phys. 21, 1265–1284 (1991). https://doi.org/10.1007/BF00732829
Carinena, J.F., Clemente-Gallardo, J., Marmo, G.: Geometrization of quantum mechanics. Theor. Math. Phys. 152, 894–903 (2007). https://doi.org/10.1007/s11232-007-0075-3
Kibble, T.W.B.: Geometrization of quantum mechanics. Commun. Math. Phys. 65, 189–201 (1979). https://doi.org/10.1007/BF01225149
Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19–53 (2001). https://doi.org/10.1016/S0393-0440(00)00052-8
Chruscinski, D.: Geometric aspects of quantum mechanics and quantum entanglement. Commun. Math. Phys. 30, 9 (2006). https://doi.org/10.1088/1742-6596/30/1/002
Leinaas, J.M., Myrheim, J., Ovrum, E.: Geometrical aspects of entanglement. Phys. Rev. A 74, 012313 (2006). https://doi.org/10.1103/PhysRevA.74.012313
Kuzmak, A.R.: Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction. J. Phys. A Math. Theor. 51, 175305 (2018). https://doi.org/10.1088/1751-8121/aab6f8
Levay, P.: The geometry of entanglement: metrics, connections and the geometric phase. J. Phys. A Math. Gen. 37, 1821 (2004). https://doi.org/10.1088/0305-4470/37/5/024
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). https://doi.org/10.1103/PhysRevLett.80.2245
Amghar, B., Daoud, M.: Geometrical aspects and quantum brachistochrone problem for a collection of \(N\) spin\(-s\) system with long-range Ising-type interaction. Phys. Lett. A 384, 126682 (2020). https://doi.org/10.1016/j.physleta.2020.126682
Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. Math. Phys. Eng. Sci. 392, 45–57 (1984). https://doi.org/10.1098/rspa.1984.0023
Pati, A.K.: Geometric aspects of noncyclic quantum evolutions. Phys. Rev. A 52, 2576 (1995). https://doi.org/10.1103/PhysRevA.52.2576
Mukunda, N., Simon, R.: Quantum kinematic approach to the geometric phase. I. General formalism. Ann. Phys. 228, 205–268 (1993). https://doi.org/10.1006/aphy.1993.1093
Oxman, L.E., Khoury, A.Z.: Fractional topological phase for entangled qudits. Phys. Rev. Lett. 106, 240503 (2011). https://doi.org/10.1103/PhysRevLett.106.240503
Khoury, A.Z., Oxman, L.E.: Topological phase structure of entangled qudits. Phys. Rev. A 89, 032106 (2014). https://doi.org/10.1103/PhysRevA.89.032106
Khoury, A.Z., Oxman, L.E., Marques, B., Matoso, A., Pádua, S.: Fractional topological phase on spatially encoded photonic qudits. Phys. Rev. A 87, 042113 (2013). https://doi.org/10.1103/PhysRevA.87.042113
Bullock, S.S., O’Leary, D.P., Brennen, G.K.: Asymptotically optimal quantum circuits for d-level systems. Phys. Rev. Lett. 94, 230502 (2005). https://doi.org/10.1103/PhysRevLett.94.230502
Ionicioiu, R., Spiller, T.P., Munro, W.J.: Generalized Toffoli gates using qudit catalysis. Phys. Rev. A 80, 012312 (2009). https://doi.org/10.1103/PhysRevA.80.012312
Xiang-Bin, W., Keiji, M.: Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001). https://doi.org/10.1103/PhysRevLett.87.097901
Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000). https://doi.org/10.1038/35002528
Sjöqvist, E., Pati, A.K., Ekert, A., Anandan, J.S., Ericsson, M., Oi, D.K., Vedral, V.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845 (2000). https://doi.org/10.1103/PhysRevLett.85.2845
Zhu, S.L., Wang, Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002). https://doi.org/10.1103/PhysRevLett.89.097902
Ekert, A., Ericsson, M., Hayden, P., Inamori, H., Jones, J.A., Oi, D.K., Vedral, V.: Geometric quantum computation. J. Modern Opt. 47, 2501–2513 (2000). https://doi.org/10.1080/09500340008232177
Bernevig, B., Chen, H.: Geometry of the three-qubit state, entanglement and division algebras. J. Phys. A Math. Gen. 36, 8325 (2003). https://doi.org/10.1088/0305-4470/36/30/309
Mosseri, R.: Two-qubit and three-qubit geometry and Hopf fibrations. Topol. Condens. Matter (2009). https://doi.org/10.1007/3-540-31264-1_9
Landi, G., Pagani, C., Reina, C.: A Hopf bundle over a quantum four-sphere from the symplectic group. Commun. Math. Phys. 263, 65–88 (2006). https://doi.org/10.1007/s00220-005-1494-3
Mosseri, R., Dandoloff, R.: Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A Math. Gen. 34, 10243 (2001). https://doi.org/10.1088/0305-4470/34/47/324
Milman, P.: Phase dynamics of entangled qubits. Phys. Rev. A 73, 062118 (2006). https://doi.org/10.1103/PhysRevA.73.062118
Hasebe, K.: Hopf maps, lowest Landau level, and fuzzy spheres. Symmetry Integr. Geom. Methods Appl. 6, 071 (2010). https://doi.org/10.3842/SIGMA.2010.071
Zhang, W.M.: Quantum nonintegrability in finite systems. Phys. Rep. 252, 1–100 (1995). https://doi.org/10.1016/0370-1573(94)00081-D
Coşkun, Ü.H., Kürkçüoğlu, S., Toga, G.C.: Quantum Hall effect on odd spheres. Phys. Rev. D 95, 065021 (2017). https://doi.org/10.1103/PhysRevD.95.065021
Demler, E., Zhang, S.C.: Non-Abelian holonomy of BCS and SDW quasiparticles. Ann. Phys. 271, 83–119 (1999). https://doi.org/10.1006/aphy.1998.5866
Nakahara, M.: Geometry, Topology and Physics. CRC Press, Boca Raton (2003)
Xi, W., Ku, W.: Hunting down magnetic monopoles in two-dimensional topological insulators and superconductors. Phys. Rev. B 100, 121201 (2019). https://doi.org/10.1103/PhysRevB.100.121201
Botero, A.: Geometric phase and modulus relations for probability amplitudes as functions on complex parameter spaces. J. Math. Phys. 44, 5279–5295 (2003). https://doi.org/10.1063/1.1612895
Kolodrubetz, M., Gritsev, V., Polkovnikov, A.: Classifying and measuring geometry of a quantum ground state manifold. Phys. Rev. B 88, 064304 (2013). https://doi.org/10.1103/PhysRevB.88.064304
Ekert, A., Knight, P.L.: Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63, 415–423 (1995). https://doi.org/10.1119/1.17904
Peres, A.: Quantum Theory: Concepts and Methods, vol. 57. Springer, Berlin (2002). https://doi.org/10.1007/0-306-47120-5
Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987). https://doi.org/10.1103/PhysRevLett.58.1593
Pati, A.K.: New derivation of the geometric phase. Phys. Lett. A 202, 40–45 (1995). https://doi.org/10.1016/0375-9601(95)00299-I
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Amghar, B., Daoud, M. Geometrical description of the dynamics of entangled two-qubit states under \(U(2) \times U(2)\) local unitary operations. Quantum Inf Process 20, 389 (2021). https://doi.org/10.1007/s11128-021-03341-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03341-4