Abstract
In this paper, we propose a rapid and high-fidelity protocol to generate Bell states by dissipation dynamics and Lyapunov control. With a designed dissipative path, an arbitrary initial state can evolve into the target Bell state with high fidelity. Besides, the evolution is accelerated by Lyapunov control pulses, particularly at the early stage of the evolution. The time consumption of achieving a certain threshold of required fidelity is shortened remarkably. By analyzing the impact of the pulses on the protocol, we show how to select the suitable pulses and their strengths to achieve a better fidelity. At last, we numerically prove that the protocol is robust against possible noises. The results presented in the paper may open a new path to achieve fast and high-fidelity generation of entangled states based on dissipation dynamics.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)
Schrödinger, E.: Discussion of probability relations between separated systems. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555–563. Cambridge University Press (1935)
Vitanov, N.V., Halfmann, T., Shore, B.W., Bergmann, K.: Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem. 52(1), 763–809 (2001)
Chen, Y.H., Xia, Y., Wu, Q.C., Huang, B.H., Song, J.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93, 052109 (2016)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)
Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)
Zheng, R.H., Kang, Y.H., Ran, D., Shi, Z.C., Xia, Y.: Deterministic interconversions between the Greenberger–Horne–Zeilinger states and the \(W\) states by invariant-based pulse design. Phys. Rev. A 101, 012345 (2020)
Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)
Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595–600 (2018)
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm. arXiv:1602.07674 (2016)
Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203–209 (2017)
Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
Kang, Y.H., Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Fast preparation of \(W\) states with superconducting quantum interference devices by using dressed states. Phys. Rev. A 94, 052311 (2016)
Lo, H.K., Popescu, S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63, 022301 (2001)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)
Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1(3), 165–171 (2007)
Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932–5935 (1998)
Pan, J.W., Simon, C., Brukner, Č, Zeilinger, A.: Entanglement purification for quantum communication. Nature 410(6832), 1067–1070 (2001)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)
Furusawa, A.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)
Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Körber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429(6993), 734–737 (2004)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)
Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)
Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam. Phys. Rev. Lett. 88(4), 047904 (2002)
Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)
Liu, Y., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)
Li, R., Yu, D.M., Su, S.L., Qian, J.: Periodically driven facilitated high-efficiency dissipative entanglement with Rydberg atoms. Phys. Rev. A 101, 042328 (2020)
Theis, L., Motzoi, F., Wilhelm, F., Saffman, M.: High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses. Phys. Rev. A 94(3), 032306 (2016)
Reiter, F., Kastoryano, M.J., Sørensen, A.S.: Driving two atoms in an optical cavity into an entangled steady state using engineered decay. New J. Phys. 14(5), 053022 (2012)
Zhou, J., Kuang, S., Cong, S.: Bell state preparation based on switching between quantum system models. J. Syst. Sci. Complex. 30(2), 347–356 (2017)
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)
Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70(9), 1187 (1993)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)
Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J., Kupsch, J., Stamatescu, I.O.: Decoherence and the Appearance of a Classical world in Quantum Theory. Springer, Berlin (2013)
Schlosshauer, M.A.: Decoherence, and the Quantum-to-Classical Transition. Springer, Berlin (2007)
Martinis, J.M., Nam, S., Aumentado, J., Lang, K., Urbina, C.: Decoherence of a superconducting qubit due to bias noise. Phys. Rev. B 67(9), 094510 (2003)
Schreier, J.A., Houck, A.A., Koch, J., Schuster, D.I., Johnson, B.R., Chow, J.M., Gambetta, J.M., Majer, J., Frunzio, L., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77(18), 180502 (2008)
Bergli, J., Galperin, Y.M., Altshuler, B.: Decoherence in qubits due to low-frequency noise. New J. Phys. 11(2), 025002 (2009)
Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91(1), 012325 (2015)
Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states preparation and transition. Laser. Phys. Lett. 11(11), 115201 (2014)
Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press on Demand, Oxford (2002)
Sørensen, A.S., Mølmer, K.: Measurement induced entanglement and quantum computation with atoms in optical cavities. Phys. Rev. Lett. 91, 097905 (2003)
Vacanti, G., Beige, A.: Cooling atoms into entangled states. New J. Phys. 11(8), 083008 (2009)
Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008)
Baumgartner, B., Narnhofer, H., Thirring, W.: Analysis of quantum semigroups with GKS-Lindblad generators: I. simple generators. J. Phys. A: Math. Theor. 41(6), 065201 (2008)
Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5(9), 633–636 (2009)
Vollbrecht, K.G.H., Muschik, C.A., Cirac, J.I.: Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107, 120502 (2011)
Dalla Torre, E.G., Otterbach, J., Demler, E., Vuletic, V., Lukin, M.D.: Dissipative preparation of spin squeezed atomic ensembles in a steady state. Phys. Rev. Lett. 110, 120402 (2013)
Qin, W., Wang, X., Miranowicz, A., Zhong, Z.R., Nori, F.: Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators. Phys. Rev. A 96, 012315 (2017)
Rao, D.D.B., Mølmer, K.: Dark entangled steady states of interacting Rydberg atoms. Phys. Rev. Lett. 111, 033606 (2013)
Reiter, F., Sørensen, A.S.: Effective operator formalism for open quantum systems. Phys. Rev. A 85, 032111 (2012)
Shankar, S., Hatridge, M., Leghtas, Z., Sliwa, K.M., Narla, A., Vool, U., Girvin, S.M., Frunzio, L., Mirrahimi, M., Devoret, M.H.: Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504(7480), 419–422 (2013)
Reiter, F., Reeb, D., Sørensen, A.S.: Scalable dissipative preparation of many-body entanglement. Phys. Rev. Lett. 117, 040501 (2016)
Reiter, F., Kastoryano, M.J., Sørensen, A.S.: Entangled steady-states of two atoms in an optical cavity by engineered decay. Technical Report. arXiv:1110.1024 (2011). Comments: 35 pages, 14 figures
Busch, J., De, S., Ivanov, S.S., Torosov, B.T., Spiller, T.P., Beige, A.: Cooling atom-cavity systems into entangled states. Phys. Rev. A 84, 022316 (2011)
Memarzadeh, L., Mancini, S.: Stationary entanglement achievable by environment-induced chain links. Phys. Rev. A 83, 042329 (2011)
Alharbi, A.F., Ficek, Z.: Deterministic creation of stationary entangled states by dissipation. Phys. Rev. A 82, 054103 (2010)
Braun, D.: Creation of entanglement by interaction with a common heat bath. Phys. Rev. Lett. 89, 277901 (2002)
Wang, X.L., Chen, L.K., Li, W., Huang, H.L., Liu, C., Chen, C., Luo, Y.H., Su, Z.E., Wu, D., Li, Z.D., Lu, H., Hu, Y., Jiang, X., Peng, C.Z., Li, L., Liu, N.L., Chen, Y.A., Lu, C.Y., Pan, J.W.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117(21), 210502 (2016)
Shen, L.T., Chen, X.Y., Yang, Z.B., Wu, H.Z., Zheng, S.B.: Steady-state entanglement for distant atoms by dissipation in coupled cavities. Phys. Rev. A 84, 064302 (2011)
Lin, Y.H., Gaebler, J.P., Reiter, F., Tan, T.R., Bowler, R., Sørensen, A.S., Leibfried, D., Wineland, D.J.: Dissipative production of a maximally entangled steady state of two quantum bits. Nature 504(7480), 415–418 (2013)
Carr, A.W., Saffman, M.: Preparation of entangled and antiferromagnetic states by dissipative Rydberg pumping. Phys. Rev. Lett. 111, 033607 (2013)
Kastoryano, M.J., Reiter, F., Sørensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011)
Shao, X.Q., Li, D.X., Ji, Y.Q., Wu, J.H., Yi, X.X.: Ground-state blockade of Rydberg atoms and application in entanglement generation. Phys. Rev. A 96, 012328 (2017)
Neuzner, A., Körber, M., Morin, O., Ritter, S., Rempe, G.: Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. Nat. Photonics 10(5), 303–306 (2016)
Morigi, G., Eschner, J., Cormick, C., Lin, Y., Leibfried, D., Wineland, D.J.: Dissipative quantum control of a spin chain. Phys. Rev. Lett. 115, 200502 (2015)
Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011)
Li, P.B., Gao, S.Y., Li, H.R., Ma, S.L., Li, F.L.: Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers. Phys. Rev. A 85, 042306 (2012)
Chen, H.B., Lambert, N., Cheng, Y.C., Chen, Y.N., Nori, F.: Using non-Markovian measures to evaluate quantum master equations for photosynthesis. Sci. Rep. 5(1), 1–12 (2015)
Ma, J., Sun, Z., Wang, X.G., Nori, F.: Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85, 062323 (2012)
Wu, Q.C., Chen, Y.H., Huang, B.H., Song, J., Xia, Y., Zheng, S.B.: Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics. Opt. Express 24(20), 22847–22864 (2016)
Yang, C., Li, D.X., Shao, X.Q.: Dissipative preparation of Bell states with parallel quantum Zeno dynamics. Sci. China Phys. Mech. 62(11), 1–6 (2019)
Sweke, R., Sinayskiy, I., Petruccione, F.: Dissipative preparation of generalized Bell states. J. Phys. B-At. Mol. Opt. 46(10), 104004 (2013)
Ding, Z.X., Hu, C.S., Shen, L.T., Su, W.J., Wu, H.Z., Zheng, S.B.: Fast dissipative preparation of three-dimensional entangled states for two Rydberg atoms via Lyapunov control. Laser. Phys. Lett. 18(2), 025205 (2021)
Wang, Y., Hu, C.S., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Simplified process of dissipation-based Greenberger–Horne–Zeilinger state generation with Lyapunov control. Opt. Commun. 483, 126671 (2021)
Ding, Z.X., Hu, C.S., Shen, L.T., Yang, Z.B., Wu, H.Z., Zheng, S.B.: Dissipative entanglement preparation via Rydberg antiblockade and Lyapunov control. Laser. Phys. Lett. 16(4), 045203 (2019)
Wen, J., Cong, S.: Preparation of quantum gates for open quantum systems by Lyapunov control method. Open. Syst. Inf. Dyn. 23(01), 1650005 (2016)
Hill, D., Moylan, P.: The stability of nonlinear dissipative systems. IEEE T. Automat. Contr. 21(5), 708–711 (1976)
Li, W., Li, C., Song, H.: Quantum synchronization in an optomechanical system based on Lyapunov control. Phys. Rev. E 93(6), 062221 (2016)
Ran, D., Shan, W.J., Shi, Z.C., Yang, Z.B., Song, J., Xia, Y.: Generation of nonclassical states in nonlinear oscillators via Lyapunov control. Phys. Rev. A 102(2), 022603 (2020)
Li, C., Song, J., Xia, Y., Ding, W.: Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control. Opt. Express 26(2), 951–962 (2018)
Ito, K., Kunisch, K.: Optimal bilinear control of an abstract Schrödinger equation. SIAM J. Control. Optim. 46(1), 274–287 (2007)
Mirrahimi, M., Rouchon, P., Turinici, G.: Lyapunov control of bilinear Schrödinger equations. Automatica 41(11), 1987–1994 (2005)
Machtyngier, E., Zuazua, E.: Stabilization of the Schrödinger equation. Port. Math. 51(2), 243–256 (1994)
Borzì, A., Ciaramella, G., Sprengel, M.: Formulation and Numerical Solution of Quantum Control Problems. SIAM, Berlin (2017)
Cong, S.: Control of Quantum Systems: Theory and Methods. Wiley, New York (2014)
Glaser, S.J., Boscain, U., Calarco, T., Koch, C.P., Köckenberger, W., Kosloff, R., Kuprov, I., Luy, B., Schirmer, S., Schulte-Herbrüggen ThomasSugny, D., Wilhelm, F.K.: Training Schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69(12), 1–24 (2015)
Sugny, D., Kontz, C., Jauslin, H.R.: Time-optimal control of a two-level dissipative quantum system. Phys. Rev. A 76(2), 023419 (2007)
Ciaramella, G., Borzì, A., Dirr, G., Wachsmuth, D.: Newton methods for the optimal control of closed quantum spin systems. SIAM J. Sci. Comput. 37(1), A319–A346 (2015)
Ciaramella, G., Borzì, A.: A LONE code for the sparse control of quantum systems. Comput. Phys. Commun. 200, 312–323 (2016)
Hintermuller, M., Marahrens, D., Markowich, P.A., Sparber, C.: Optimal bilinear control of Gross–Pitaevskii equations. SIAM J. Control. Optim. 51(3), 2509–2543 (2013)
Sprengel, M., Ciaramella, G., Borzì, A.: Investigation of optimal control problems governed by a time-dependent Kohn–Sham model. J. Dyn. Control Syst. 24(4), 657–679 (2018)
Gaebler, J.P., Tan, T.R., Lin, Y., Wan, Y., Bowler, R., Keith, A.C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., Wineland, D.J.: High-fidelity universal gate set for \({^{9}\rm Be}^{+}\) ion qubits. Phys. Rev. Lett. 117(6), 060505 (2016)
Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)
Yuan, H.Y., Yan, P., Zheng, S.S., He, Q.Y., Xia, K., Yung, M.H.: Steady Bell state generation via magnon-photon coupling. Phys. Rev. Lett. 124, 053602 (2020)
Kowalewska-Kudłaszyk, A., Leoński, W., Peřina, J.: Generalized Bell states generation in a parametrically excited nonlinear coupler. Phys. Scr. T147, 014016 (2012)
Shwa, D., Cohen, R.D., Retzker, A., Katz, N.: Heralded generation of Bell states using atomic ensembles. Phys. Rev. A 88, 063844 (2013)
Yi, X.X., Huang, X.L., Wu, C.f., Oh, C.H.: Driving quantum systems into decoherence-free subspaces by Lyapunov control. Phys. Rev. A 80, 052316 (2009)
Mirrahimi, M., Rouchon, P., Turinici, G.: Lyapunov control of bilinear Schrödinger equations. Automat. J. IFAC 41(11), 1987–1994 (2005)
Sklarz, S.E., Tannor, D.J.: Quantum computation via local control theory: direct sum vs. direct product Hilbert spaces. Chem. Phys. 322(1–2), 87–97 (2006)
Shi, Z.C., Wang, L.C., Yi, X.X.: Preparing entangled states by Lyapunov control. Quantum Inf. Process. 15(12), 4939–4953 (2016)
Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Coherent control in quantum open systems: an approach for accelerating dissipation-based quantum state generation. Phys. Rev. A 96, 043853 (2017)
Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Accelerated and noise-resistant generation of high-fidelity steady-state entanglement with Rydberg atoms. Phys. Rev. A 97, 032328 (2018)
Wang, Y., Hu, C.S., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Accelerated and noise-resistant protocol of dissipation-based Knill–Laflamme–Milburn state generation with Lyapunov control. Ann. Phys. Berlin 531(7), 1900006 (2019)
Li, D.X., Shao, X.Q.: Unconventional Rydberg pumping and applications in quantum information processing. Phys. Rev. A 98, 062338 (2018)
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)
Ruschhaupt, A., Chen, X., Alonso, D., Muga, J.G.: Optimally robust shortcuts to population inversion in two-level quantum systems. New J. Phys. 14(9), 093040 (2012)
Chen, Y.H., Qin, W., Nori, F.: Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification. Phys. Rev. A 100, 012339 (2019)
Alipour, S., Chenu, A., Rezakhani, A.T., del Campo, A.: Shortcuts to adiabaticity in driven open quantum systems: balanced gain and loss and non-Markovian evolution. Quantum 4, 336 (2020)
Chen, X., Muga, J.G.: Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Phys. Rev. A 82, 053403 (2010)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grants Nos. 11575045, 11874114, and 11674060, the Natural Science Funds for Distinguished Young Scholar of Fujian Province under Grant 2020J06011 and Project from Fuzhou University under Grant JG202001-2, the Natural Science Foundation of Fujian Province under Grant No. 2018J01414.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, YQ., Wang, Y., Zhao, X. et al. Accelerated high-fidelity Bell states generation based on dissipation dynamics and Lyapunov control. Quantum Inf Process 20, 404 (2021). https://doi.org/10.1007/s11128-021-03351-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03351-2