Skip to main content

Advertisement

Log in

Accelerated high-fidelity Bell states generation based on dissipation dynamics and Lyapunov control

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a rapid and high-fidelity protocol to generate Bell states by dissipation dynamics and Lyapunov control. With a designed dissipative path, an arbitrary initial state can evolve into the target Bell state with high fidelity. Besides, the evolution is accelerated by Lyapunov control pulses, particularly at the early stage of the evolution. The time consumption of achieving a certain threshold of required fidelity is shortened remarkably. By analyzing the impact of the pulses on the protocol, we show how to select the suitable pulses and their strengths to achieve a better fidelity. At last, we numerically prove that the protocol is robust against possible noises. The results presented in the paper may open a new path to achieve fast and high-fidelity generation of entangled states based on dissipation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Schrödinger, E.: Discussion of probability relations between separated systems. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555–563. Cambridge University Press (1935)

  4. Vitanov, N.V., Halfmann, T., Shore, B.W., Bergmann, K.: Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem. 52(1), 763–809 (2001)

    Article  ADS  Google Scholar 

  5. Chen, Y.H., Xia, Y., Wu, Q.C., Huang, B.H., Song, J.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93, 052109 (2016)

    Article  ADS  Google Scholar 

  6. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  7. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)

    Article  ADS  Google Scholar 

  8. Zheng, R.H., Kang, Y.H., Ran, D., Shi, Z.C., Xia, Y.: Deterministic interconversions between the Greenberger–Horne–Zeilinger states and the \(W\) states by invariant-based pulse design. Phys. Rev. A 101, 012345 (2020)

    Article  ADS  Google Scholar 

  9. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  10. Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595–600 (2018)

    Article  Google Scholar 

  11. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  ADS  Google Scholar 

  12. Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm. arXiv:1602.07674 (2016)

  13. Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203–209 (2017)

    Article  ADS  Google Scholar 

  14. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)

  15. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kang, Y.H., Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Fast preparation of \(W\) states with superconducting quantum interference devices by using dressed states. Phys. Rev. A 94, 052311 (2016)

    Article  ADS  Google Scholar 

  17. Lo, H.K., Popescu, S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63, 022301 (2001)

    Article  ADS  Google Scholar 

  18. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  19. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1(3), 165–171 (2007)

    Article  ADS  Google Scholar 

  20. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932–5935 (1998)

    Article  ADS  Google Scholar 

  21. Pan, J.W., Simon, C., Brukner, Č, Zeilinger, A.: Entanglement purification for quantum communication. Nature 410(6832), 1067–1070 (2001)

    Article  ADS  Google Scholar 

  22. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  23. Furusawa, A.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  24. Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Körber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429(6993), 734–737 (2004)

    Article  ADS  Google Scholar 

  25. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  26. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)

    Article  MATH  Google Scholar 

  27. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

  28. Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam. Phys. Rev. Lett. 88(4), 047904 (2002)

    Article  ADS  Google Scholar 

  29. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)

    Article  ADS  Google Scholar 

  30. Liu, Y., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)

    Article  ADS  Google Scholar 

  31. Li, R., Yu, D.M., Su, S.L., Qian, J.: Periodically driven facilitated high-efficiency dissipative entanglement with Rydberg atoms. Phys. Rev. A 101, 042328 (2020)

    Article  ADS  Google Scholar 

  32. Theis, L., Motzoi, F., Wilhelm, F., Saffman, M.: High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses. Phys. Rev. A 94(3), 032306 (2016)

    Article  ADS  Google Scholar 

  33. Reiter, F., Kastoryano, M.J., Sørensen, A.S.: Driving two atoms in an optical cavity into an entangled steady state using engineered decay. New J. Phys. 14(5), 053022 (2012)

    Article  ADS  Google Scholar 

  34. Zhou, J., Kuang, S., Cong, S.: Bell state preparation based on switching between quantum system models. J. Syst. Sci. Complex. 30(2), 347–356 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70(9), 1187 (1993)

    Article  ADS  Google Scholar 

  37. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    Article  ADS  Google Scholar 

  38. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J., Kupsch, J., Stamatescu, I.O.: Decoherence and the Appearance of a Classical world in Quantum Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  39. Schlosshauer, M.A.: Decoherence, and the Quantum-to-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  40. Martinis, J.M., Nam, S., Aumentado, J., Lang, K., Urbina, C.: Decoherence of a superconducting qubit due to bias noise. Phys. Rev. B 67(9), 094510 (2003)

    Article  ADS  Google Scholar 

  41. Schreier, J.A., Houck, A.A., Koch, J., Schuster, D.I., Johnson, B.R., Chow, J.M., Gambetta, J.M., Majer, J., Frunzio, L., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77(18), 180502 (2008)

    Article  ADS  Google Scholar 

  42. Bergli, J., Galperin, Y.M., Altshuler, B.: Decoherence in qubits due to low-frequency noise. New J. Phys. 11(2), 025002 (2009)

    Article  ADS  Google Scholar 

  43. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91(1), 012325 (2015)

    Article  ADS  Google Scholar 

  44. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states preparation and transition. Laser. Phys. Lett. 11(11), 115201 (2014)

    Article  ADS  Google Scholar 

  45. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press on Demand, Oxford (2002)

    MATH  Google Scholar 

  46. Sørensen, A.S., Mølmer, K.: Measurement induced entanglement and quantum computation with atoms in optical cavities. Phys. Rev. Lett. 91, 097905 (2003)

    Article  ADS  Google Scholar 

  47. Vacanti, G., Beige, A.: Cooling atoms into entangled states. New J. Phys. 11(8), 083008 (2009)

    Article  ADS  Google Scholar 

  48. Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008)

    Article  ADS  Google Scholar 

  49. Baumgartner, B., Narnhofer, H., Thirring, W.: Analysis of quantum semigroups with GKS-Lindblad generators: I. simple generators. J. Phys. A: Math. Theor. 41(6), 065201 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5(9), 633–636 (2009)

    Article  Google Scholar 

  51. Vollbrecht, K.G.H., Muschik, C.A., Cirac, J.I.: Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107, 120502 (2011)

    Article  ADS  Google Scholar 

  52. Dalla Torre, E.G., Otterbach, J., Demler, E., Vuletic, V., Lukin, M.D.: Dissipative preparation of spin squeezed atomic ensembles in a steady state. Phys. Rev. Lett. 110, 120402 (2013)

    Article  ADS  Google Scholar 

  53. Qin, W., Wang, X., Miranowicz, A., Zhong, Z.R., Nori, F.: Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators. Phys. Rev. A 96, 012315 (2017)

    Article  ADS  Google Scholar 

  54. Rao, D.D.B., Mølmer, K.: Dark entangled steady states of interacting Rydberg atoms. Phys. Rev. Lett. 111, 033606 (2013)

    Article  ADS  Google Scholar 

  55. Reiter, F., Sørensen, A.S.: Effective operator formalism for open quantum systems. Phys. Rev. A 85, 032111 (2012)

    Article  ADS  Google Scholar 

  56. Shankar, S., Hatridge, M., Leghtas, Z., Sliwa, K.M., Narla, A., Vool, U., Girvin, S.M., Frunzio, L., Mirrahimi, M., Devoret, M.H.: Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504(7480), 419–422 (2013)

    Article  ADS  Google Scholar 

  57. Reiter, F., Reeb, D., Sørensen, A.S.: Scalable dissipative preparation of many-body entanglement. Phys. Rev. Lett. 117, 040501 (2016)

    Article  ADS  Google Scholar 

  58. Reiter, F., Kastoryano, M.J., Sørensen, A.S.: Entangled steady-states of two atoms in an optical cavity by engineered decay. Technical Report. arXiv:1110.1024 (2011). Comments: 35 pages, 14 figures

  59. Busch, J., De, S., Ivanov, S.S., Torosov, B.T., Spiller, T.P., Beige, A.: Cooling atom-cavity systems into entangled states. Phys. Rev. A 84, 022316 (2011)

    Article  ADS  Google Scholar 

  60. Memarzadeh, L., Mancini, S.: Stationary entanglement achievable by environment-induced chain links. Phys. Rev. A 83, 042329 (2011)

    Article  ADS  Google Scholar 

  61. Alharbi, A.F., Ficek, Z.: Deterministic creation of stationary entangled states by dissipation. Phys. Rev. A 82, 054103 (2010)

    Article  ADS  Google Scholar 

  62. Braun, D.: Creation of entanglement by interaction with a common heat bath. Phys. Rev. Lett. 89, 277901 (2002)

    Article  Google Scholar 

  63. Wang, X.L., Chen, L.K., Li, W., Huang, H.L., Liu, C., Chen, C., Luo, Y.H., Su, Z.E., Wu, D., Li, Z.D., Lu, H., Hu, Y., Jiang, X., Peng, C.Z., Li, L., Liu, N.L., Chen, Y.A., Lu, C.Y., Pan, J.W.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117(21), 210502 (2016)

    Article  ADS  Google Scholar 

  64. Shen, L.T., Chen, X.Y., Yang, Z.B., Wu, H.Z., Zheng, S.B.: Steady-state entanglement for distant atoms by dissipation in coupled cavities. Phys. Rev. A 84, 064302 (2011)

    Article  ADS  Google Scholar 

  65. Lin, Y.H., Gaebler, J.P., Reiter, F., Tan, T.R., Bowler, R., Sørensen, A.S., Leibfried, D., Wineland, D.J.: Dissipative production of a maximally entangled steady state of two quantum bits. Nature 504(7480), 415–418 (2013)

    Article  ADS  Google Scholar 

  66. Carr, A.W., Saffman, M.: Preparation of entangled and antiferromagnetic states by dissipative Rydberg pumping. Phys. Rev. Lett. 111, 033607 (2013)

    Article  ADS  Google Scholar 

  67. Kastoryano, M.J., Reiter, F., Sørensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011)

    Article  ADS  Google Scholar 

  68. Shao, X.Q., Li, D.X., Ji, Y.Q., Wu, J.H., Yi, X.X.: Ground-state blockade of Rydberg atoms and application in entanglement generation. Phys. Rev. A 96, 012328 (2017)

    Article  ADS  Google Scholar 

  69. Neuzner, A., Körber, M., Morin, O., Ritter, S., Rempe, G.: Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. Nat. Photonics 10(5), 303–306 (2016)

    Article  ADS  Google Scholar 

  70. Morigi, G., Eschner, J., Cormick, C., Lin, Y., Leibfried, D., Wineland, D.J.: Dissipative quantum control of a spin chain. Phys. Rev. Lett. 115, 200502 (2015)

    Article  ADS  Google Scholar 

  71. Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011)

    Article  ADS  Google Scholar 

  72. Li, P.B., Gao, S.Y., Li, H.R., Ma, S.L., Li, F.L.: Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers. Phys. Rev. A 85, 042306 (2012)

    Article  ADS  Google Scholar 

  73. Chen, H.B., Lambert, N., Cheng, Y.C., Chen, Y.N., Nori, F.: Using non-Markovian measures to evaluate quantum master equations for photosynthesis. Sci. Rep. 5(1), 1–12 (2015)

    Google Scholar 

  74. Ma, J., Sun, Z., Wang, X.G., Nori, F.: Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85, 062323 (2012)

    Article  ADS  Google Scholar 

  75. Wu, Q.C., Chen, Y.H., Huang, B.H., Song, J., Xia, Y., Zheng, S.B.: Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics. Opt. Express 24(20), 22847–22864 (2016)

    Article  ADS  Google Scholar 

  76. Yang, C., Li, D.X., Shao, X.Q.: Dissipative preparation of Bell states with parallel quantum Zeno dynamics. Sci. China Phys. Mech. 62(11), 1–6 (2019)

    Article  Google Scholar 

  77. Sweke, R., Sinayskiy, I., Petruccione, F.: Dissipative preparation of generalized Bell states. J. Phys. B-At. Mol. Opt. 46(10), 104004 (2013)

    Article  ADS  Google Scholar 

  78. Ding, Z.X., Hu, C.S., Shen, L.T., Su, W.J., Wu, H.Z., Zheng, S.B.: Fast dissipative preparation of three-dimensional entangled states for two Rydberg atoms via Lyapunov control. Laser. Phys. Lett. 18(2), 025205 (2021)

    Article  ADS  Google Scholar 

  79. Wang, Y., Hu, C.S., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Simplified process of dissipation-based Greenberger–Horne–Zeilinger state generation with Lyapunov control. Opt. Commun. 483, 126671 (2021)

    Article  Google Scholar 

  80. Ding, Z.X., Hu, C.S., Shen, L.T., Yang, Z.B., Wu, H.Z., Zheng, S.B.: Dissipative entanglement preparation via Rydberg antiblockade and Lyapunov control. Laser. Phys. Lett. 16(4), 045203 (2019)

    Article  ADS  Google Scholar 

  81. Wen, J., Cong, S.: Preparation of quantum gates for open quantum systems by Lyapunov control method. Open. Syst. Inf. Dyn. 23(01), 1650005 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  82. Hill, D., Moylan, P.: The stability of nonlinear dissipative systems. IEEE T. Automat. Contr. 21(5), 708–711 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  83. Li, W., Li, C., Song, H.: Quantum synchronization in an optomechanical system based on Lyapunov control. Phys. Rev. E 93(6), 062221 (2016)

    Article  ADS  Google Scholar 

  84. Ran, D., Shan, W.J., Shi, Z.C., Yang, Z.B., Song, J., Xia, Y.: Generation of nonclassical states in nonlinear oscillators via Lyapunov control. Phys. Rev. A 102(2), 022603 (2020)

    Article  ADS  Google Scholar 

  85. Li, C., Song, J., Xia, Y., Ding, W.: Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control. Opt. Express 26(2), 951–962 (2018)

    Article  ADS  Google Scholar 

  86. Ito, K., Kunisch, K.: Optimal bilinear control of an abstract Schrödinger equation. SIAM J. Control. Optim. 46(1), 274–287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  87. Mirrahimi, M., Rouchon, P., Turinici, G.: Lyapunov control of bilinear Schrödinger equations. Automatica 41(11), 1987–1994 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  88. Machtyngier, E., Zuazua, E.: Stabilization of the Schrödinger equation. Port. Math. 51(2), 243–256 (1994)

    MATH  Google Scholar 

  89. Borzì, A., Ciaramella, G., Sprengel, M.: Formulation and Numerical Solution of Quantum Control Problems. SIAM, Berlin (2017)

    Book  MATH  Google Scholar 

  90. Cong, S.: Control of Quantum Systems: Theory and Methods. Wiley, New York (2014)

    Book  MATH  Google Scholar 

  91. Glaser, S.J., Boscain, U., Calarco, T., Koch, C.P., Köckenberger, W., Kosloff, R., Kuprov, I., Luy, B., Schirmer, S., Schulte-Herbrüggen ThomasSugny, D., Wilhelm, F.K.: Training Schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69(12), 1–24 (2015)

  92. Sugny, D., Kontz, C., Jauslin, H.R.: Time-optimal control of a two-level dissipative quantum system. Phys. Rev. A 76(2), 023419 (2007)

    Article  ADS  Google Scholar 

  93. Ciaramella, G., Borzì, A., Dirr, G., Wachsmuth, D.: Newton methods for the optimal control of closed quantum spin systems. SIAM J. Sci. Comput. 37(1), A319–A346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  94. Ciaramella, G., Borzì, A.: A LONE code for the sparse control of quantum systems. Comput. Phys. Commun. 200, 312–323 (2016)

    Article  ADS  MATH  Google Scholar 

  95. Hintermuller, M., Marahrens, D., Markowich, P.A., Sparber, C.: Optimal bilinear control of Gross–Pitaevskii equations. SIAM J. Control. Optim. 51(3), 2509–2543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  96. Sprengel, M., Ciaramella, G., Borzì, A.: Investigation of optimal control problems governed by a time-dependent Kohn–Sham model. J. Dyn. Control Syst. 24(4), 657–679 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  97. Gaebler, J.P., Tan, T.R., Lin, Y., Wan, Y., Bowler, R., Keith, A.C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., Wineland, D.J.: High-fidelity universal gate set for \({^{9}\rm Be}^{+}\) ion qubits. Phys. Rev. Lett. 117(6), 060505 (2016)

    Article  ADS  Google Scholar 

  98. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  Google Scholar 

  99. Yuan, H.Y., Yan, P., Zheng, S.S., He, Q.Y., Xia, K., Yung, M.H.: Steady Bell state generation via magnon-photon coupling. Phys. Rev. Lett. 124, 053602 (2020)

    Article  ADS  Google Scholar 

  100. Kowalewska-Kudłaszyk, A., Leoński, W., Peřina, J.: Generalized Bell states generation in a parametrically excited nonlinear coupler. Phys. Scr. T147, 014016 (2012)

    Article  ADS  Google Scholar 

  101. Shwa, D., Cohen, R.D., Retzker, A., Katz, N.: Heralded generation of Bell states using atomic ensembles. Phys. Rev. A 88, 063844 (2013)

    Article  ADS  Google Scholar 

  102. Yi, X.X., Huang, X.L., Wu, C.f., Oh, C.H.: Driving quantum systems into decoherence-free subspaces by Lyapunov control. Phys. Rev. A 80, 052316 (2009)

  103. Mirrahimi, M., Rouchon, P., Turinici, G.: Lyapunov control of bilinear Schrödinger equations. Automat. J. IFAC 41(11), 1987–1994 (2005)

    Article  MATH  Google Scholar 

  104. Sklarz, S.E., Tannor, D.J.: Quantum computation via local control theory: direct sum vs. direct product Hilbert spaces. Chem. Phys. 322(1–2), 87–97 (2006)

    Article  Google Scholar 

  105. Shi, Z.C., Wang, L.C., Yi, X.X.: Preparing entangled states by Lyapunov control. Quantum Inf. Process. 15(12), 4939–4953 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Coherent control in quantum open systems: an approach for accelerating dissipation-based quantum state generation. Phys. Rev. A 96, 043853 (2017)

    Article  ADS  Google Scholar 

  107. Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Accelerated and noise-resistant generation of high-fidelity steady-state entanglement with Rydberg atoms. Phys. Rev. A 97, 032328 (2018)

    Article  ADS  Google Scholar 

  108. Wang, Y., Hu, C.S., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Accelerated and noise-resistant protocol of dissipation-based Knill–Laflamme–Milburn state generation with Lyapunov control. Ann. Phys. Berlin 531(7), 1900006 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  109. Li, D.X., Shao, X.Q.: Unconventional Rydberg pumping and applications in quantum information processing. Phys. Rev. A 98, 062338 (2018)

    Article  ADS  Google Scholar 

  110. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Ruschhaupt, A., Chen, X., Alonso, D., Muga, J.G.: Optimally robust shortcuts to population inversion in two-level quantum systems. New J. Phys. 14(9), 093040 (2012)

    Article  ADS  MATH  Google Scholar 

  112. Chen, Y.H., Qin, W., Nori, F.: Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification. Phys. Rev. A 100, 012339 (2019)

    Article  ADS  Google Scholar 

  113. Alipour, S., Chenu, A., Rezakhani, A.T., del Campo, A.: Shortcuts to adiabaticity in driven open quantum systems: balanced gain and loss and non-Markovian evolution. Quantum 4, 336 (2020)

    Article  Google Scholar 

  114. Chen, X., Muga, J.G.: Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Phys. Rev. A 82, 053403 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11575045, 11874114, and 11674060, the Natural Science Funds for Distinguished Young Scholar of Fujian Province under Grant 2020J06011 and Project from Fuzhou University under Grant JG202001-2, the Natural Science Foundation of Fujian Province under Grant No. 2018J01414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YQ., Wang, Y., Zhao, X. et al. Accelerated high-fidelity Bell states generation based on dissipation dynamics and Lyapunov control. Quantum Inf Process 20, 404 (2021). https://doi.org/10.1007/s11128-021-03351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03351-2

Keywords