Skip to main content
Log in

Entanglement measures of a pentapartite W-class state in the noninertial frame

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the entanglement of a pentapartite W-class state system in the noninertial frame when transformed from the Minkowski coordinates to Rindler space. Five different cases are considered, one of which includes one to five of 5 qubits selected arbitrarily. The selected qubits move at an acceleration a, but the others remain stationary. The negativities of 1–1 tangle, 1–4 tangle and von Neumann entropy which are used to describe the nature of entanglement are systematically carried out. We discover that the negativities of all 1–1 and 1–4 tangles and whole entanglement measures, which include \(\pi _{5}\) and \(\Pi _5\), decrease as the acceleration parameter r increases. We notice that entanglements of both \(\pi _{5}\) and \(\Pi _5\) still exist even if the acceleration parameter r tends to infinity except for a special case where all five observers are accelerated simultaneously. This implies that the degree of entanglement in this particular case is minimal. However, it is shown from the plot of 1–1 tangle that entanglement will disappear at \(r>0.61548\) when one of two observers is accelerated, but it will vanish at \(r>0.38071\) when both observers are accelerated. We also note that compared with the other four cases, the entanglement is more robust when one of five qubits is accelerated. In the case of four or five qubits being accelerated, the difference between the algebraic average \(\pi _{5}\) and geometric average \(\Pi _5\) is almost equal to zero, but their difference gradually increases as the number of accelerated observer decreases. We also study the von Neumann entropy of pentapartite system, the tetrapartite, tripartite and bipartite subsystems. We find that all of them increase in general trend with the increasing acceleration parameter r except for a special case, when there is on accelerated observer. However, the von Neumann entropies of the subsystems \(S_{\alpha \beta \gamma \delta }\), \(S_{\alpha \beta \gamma }\) and \(S_{\alpha \beta }\) increase when all observers are accelerated simultaneously and then decrease as the acceleration parameter r increases. In special cases, that is, without any accelerated observers, the von Neumann entropies of these subsystems are constants, say 0.721928, 0.970951 and 0.970951, respectively. These results once again confirm that the degree of entanglement degrades due to the Unruh effect. The present results are also compared with those of tripartite and tetrapartite W-class cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 5 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.S., Peres, A.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56, 1163 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  3. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  4. Shor P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Comp. Soc., Los Alamitos, CA, 1994), p. 124

  5. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  6. Augusiak, R., Horodecki, P.: Multipartite secret key distillation and bound entanglement. Phys. Rev. A 80, 042307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Crispino, L.C.B., Higuchi, A., Matsa, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Davies, P.C.W.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A: Math. Gen. 8, 609 (1975)

    Article  ADS  Google Scholar 

  10. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  11. Bruschi, D.E., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  12. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Alsing, P.M., Milburn, G.J.: Teleportation with a Uniformly Accelerated Partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  14. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  15. Qiang, W.C., Sun, G.H., Dong, Q., Camacho-Nieto, O., Dong, S.H.: Concurrence of three Jaynes-Cummings systems. Quant. Inf. Process. 17, 90 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)

    Article  ADS  Google Scholar 

  17. Wang, J., Jiang, J.: Erratum: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 97, 029902 (2018)

    Article  ADS  Google Scholar 

  18. Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  19. Yao, Y., Xiao, X., Ge, L., Wang, X.G., Sun, C.P.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)

    Article  ADS  Google Scholar 

  20. Khan, S.: Tripartite entanglement of fermionic system in accelerated frames. Ann. Phys. 348, 270 (2014)

    Article  ADS  MATH  Google Scholar 

  21. Khan, S., Khan, N.A., Khan, M.K.: Non-maximal tripartite entanglement degradation of Dirac and scalar fields in non-inertial frame. Commun. Theor. Phys. 61(3), 281 (2014)

    Article  MATH  Google Scholar 

  22. Bruschi, D.E., Dragan, A., Fuentes, I., Louko, J.: Particle and antiparticle bosonic entanglement in noninertialframes. Phys. Rev. D 86(2), 025026 (2012)

    Article  ADS  Google Scholar 

  23. Martín-Martínez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  24. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Friis, N., Lee, A.R., Bruschi, D.E.: Fermionic-mode entanglement in quantum information. Phys. Rev. A 87, 022338 (2013)

    Article  ADS  Google Scholar 

  26. Smith, A., Mann, R.B.: Persistence of tripartite nonlocality for noninertial observers. Phys. Rev. A 86(1), 012306 (2012)

    Article  ADS  Google Scholar 

  27. Moradpour, H., Maghool, S., Moosavi, S.A.: Three-particle Bell-like inequalities under Lorentz transformations. Quant. Inf. Process. 14, 3913 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Moradi, S., Amiri, F.: Nonlocality and Multipartite Entanglement in Asymptotically Flat Space-Times. Commun. Theor. Phys. 65, 17 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74(3), 032326 (2006)

    Article  ADS  Google Scholar 

  30. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. Park, D.K.: Tripartite entanglement-dependence of tripartite non-locality in non-inertial frames. J. Phys. A 45, 415308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hwang, M.R., Jung, E., Park, D.K.: Three-tangle in non-inertial frame. Class. Quant. Grav. 29, 224004 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Park, D.K.: Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment. Quant. Inf. Process. 15(8), 3189 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gartzke, S., Osterloh, A.: Multipartite steering inequalities based on entropic uncertainty relations. Phys. Rev. A 98, 052307 (2018)

    Article  Google Scholar 

  35. Peng, X.H., Suter, D.: Spin qubits for quantum simulations. Front. Phys. China 5(1), 1 (2010)

    Article  ADS  Google Scholar 

  36. Torres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93 (2019)

    Article  ADS  Google Scholar 

  37. Dong, Q., Torres-Arenas, A.J., Sun, G.H., Dong, S.H.: Tetrapartite entanglement features of W-Class state in uniform acceleration. Front. Phys. 15(1), 11602 (2020)

    Article  ADS  Google Scholar 

  38. Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Toutounji, M., Dong, S.H.: Tripartite entanglement measures of generalized GHZ state in uniform acceleration. Chin. Phys. Lett. 36, 100301 (2019)

    Article  ADS  Google Scholar 

  39. Dong, Q., Sun, G.H., Toutounji, M., Dong, S.H.: Tetrapartite entanglement measures of GHZ state with nonuniform acceleration. Optik 201, 163487 (2020)

    Article  ADS  Google Scholar 

  40. Sun, W.Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system under non-inertial frames. Quant. Inf. Process. 16, 90 (2017)

    Article  ADS  MATH  Google Scholar 

  41. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  42. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  43. Qiang, W.C., Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Dong, S.H.: Entanglement property of the Werner state in accelerated frames. Quant. Inf. Process. 18, 314 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  44. Choi, J.H., Kim, J.S.: Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92, 042307 (2015)

    Article  ADS  Google Scholar 

  45. Williams, C.P.: Explorations in Quantum Computing. Springer Science and Business Media, New York (2010)

    MATH  Google Scholar 

  46. Oliveira, D.S., Ramos, R.V.: Residual entanglement with negativity for pure four-qubit quantum states. Quant. Inf. Process. 9, 497 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sabín, C., García-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48(3), 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  48. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, New Jersey (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the kind referees for making invaluable and positive suggestions and criticisms, which have improved the manuscript greatly. The authors also thank Prof. Shi-Hai Dong for helpful discussions and for reading this work carefully.

Funding

This research has been funded by Consejo Nacional de Ciencia y Tecnología (MX) Grant No. 288856-CB, Secretaria de investigación, IPN-Mexico Grant No. 20210414-SIP-IPN

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Symmetry property of the negativity

Appendix A: Symmetry property of the negativity

In this appendix, for convenience we list some useful relations about the 1–4 tangle and 1–1 tangle as follows:

  1. 1.

    1–4 tangle: \(N_{A(BCDE_{I})} = N_{B(ACDE_{I})} = N_{C(ABDE_{I})} = N_{D(ABCE_{I})}\), \(N_{A(BCD_{I}E_{I})} = N_{B(ACD_{I}E_{I})} = N_{C(ABD_{I}E_{I})}\), \( N_{D_{I}(ABCE_{I})}=N_{E_{I}(ABCD_{I})}\), \(N_{A(BC_{I}D_{I}E_{I})} = N_{B(AC_{I}D_{I}E_{I})}\), \( N_{C_{I}(ABD_{I}E_{I})} = N_{D_{I}(ABC_{I}E_{I})}=N_{E_{I}(ABC_{I}D_{I})}\), \( N_{B_{I}(AC_{I}D_{I}E_{I})} = N_{C_{I}(AB_{I}D_{I}E_{I})} = N_{D_{I}(AB_{I}C_{I}E_{I})}=N_{E_{I}(AB_{I}C_{I}D_{I})} \) and \(N_{A_{I}(B_{I}C_{I}D_{I}E_{I})} = N_{B_{I}(A_{I}C_{I}D_{I}E_{I})} = N_{C_{I}(A_{I}B_{I}D_{I}E_{I})} = N_{D_{I}(A_{I}B_{I}C_{I}E_{I})}=N_{E_{I}(A_{I}B_{I}C_{I}D_{I})}\).

  2. 2.

    1–1 tangle: \(N_{A(B)} = N_{A(C)} = N_{B(C)} = N_{A(D)} = N_{B(D)} = N_{C(D)}\), \(N_{A(BI)} = N_{A(CI)} = N_{B(CI)} = N_{A(DI)} = N_{B(DI)} = N_{C(DI)} = N_{A(EI)} = N_{B(EI)} = N_{C(EI)} = N_{D(EI)}\), \(N_{AI(BI)} = N_{AI(CI)} = N_{BI(CI)} = N_{AI(DI)} = N_{BI(DI)} = N_{CI(DI)} = N_{AI(EI)} = N_{BI(EI)} = N_{CI(EI)} = N_{DI(EI)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocampo, D.M., Ramírez, J.C.S., Yáñez-Márquez, C. et al. Entanglement measures of a pentapartite W-class state in the noninertial frame. Quantum Inf Process 21, 46 (2022). https://doi.org/10.1007/s11128-021-03374-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03374-9

Keywords

Navigation