Skip to main content
Log in

Quantum locality preserving projection algorithm

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a quantum algorithm to efficiently perform locality preserving projection (LPP) for dimensionality reduction, named quantum locality preserving projection (QLPP). We present QLPP in 4 steps and give their corresponding quantum circuits. Furthermore, we give an improved algorithm to construct the density matrix proportional to the Hermitian/non-Hermitian chain product composed of multiple Hermitian/non-Hermitian matrices in QLPP. The analysis results show that the computation complexity of QLLP is \(O(d\kappa _\mathrm{eff}^{10}\sqrt{m}\mathrm{polylog}(m)/\varepsilon ^{7})\) for \(m\gg n\), where \(\kappa _\mathrm{eff}\) is a predefined condition number, m is the number of training data with dimension n, d is the dimension of reduced dimension feature space, and \(\varepsilon \) denotes the tolerance error. It is polynomial speedup in m compared to classical LPP algorithm, whose complexity is \(O (m^2n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chalumuri, A., Kune, R., Manoj, B.S.: A hybrid classical-quantum approach for multi-class classification. Quantum Inf. Process. 20(3), 1–19 (2021)

    Article  MathSciNet  Google Scholar 

  2. Wang, Shengbin, Wang, Zhimin, Li, Wendong, Fan, Lixin, Wei, Zhiqiang, Yongjian, Gu.: Quantum fast poisson solver: the algorithm and complete and modular circuit design. Quantum Inf. Process. 19(6), 1–25 (2020)

    MathSciNet  ADS  Google Scholar 

  3. Zhang, AnQi., Wang, XueMei, Zhao, ShengMei: The multiplier based on quantum fourier transform. CCF Trans. High Perform. Comput. 2(3), 221–227 (2020)

    Article  Google Scholar 

  4. Hou, Yanyan, Li, Jian, Chen, Xiubo, Li, Hengji, Li, Chaoyang, Tian, Yuan, Li, Leilei, Cao, Zhengwen, Wang, Na.: Quantum algorithm for help-training semi-supervised support vector machine. Quantum Inf. Process. 19(9), 1–20 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  5. Zhang, Yanbing, Song, Tingting, Zhihao, Wu.: An improved quantum algorithm for support matrix machines. Quantum Inf. Process. 20(7), 1–12 (2021)

    MathSciNet  ADS  Google Scholar 

  6. Dang, Yijie, Jiang, Nan, Hao, Hu., Ji, Zhuoxiao, Zhang, Wenyin: Image classification based on quantum k-nearest-neighbor algorithm. Quantum Inf. Process. 17(9), 1–18 (2018)

    Article  Google Scholar 

  7. Meng, Fan-Xu., Xu-Tao, Yu., Zhang, Zai-Chen.: Improved quantum algorithm for mmse-based massive mimo uplink detection. Quantum Inf. Process. 19(8), 1–17 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  8. Ji, Yahui, Meng, Fanxu, Jin, Jiejun, Xutao, Yu., Zhang, Zaichen, You, Xiaohu, Zhang, Chuan: Quantum version of mmse-based massive mimo uplink detection. Quantum Inf. Process. 19(2), 1–28 (2020)

    Article  ADS  Google Scholar 

  9. Chao-Hua, Yu., Gao, Fei, Wen, Qiao-Yan.: An improved quantum algorithm for ridge regression. IEEE Trans. Knowl. Data Eng. 33(3), 858–866 (2021)

    Google Scholar 

  10. Shao, Changpeng, Xiang, Hua: Quantum regularized least squares solver with parameter estimate. Quantum Inf. Process. 19(4), 1–20 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  11. Chao-Hua, Yu., Gao, Fei, Chenghuan Liu, Du., Huynh, Mark Reynolds, Wang, Jingbo: Quantum algorithm for visual tracking. Phys. Rev. A 99(10), 022301 (2019)

    ADS  Google Scholar 

  12. Chao-Hua, Yu., Gao, Fei, Lin, Song, Wang, Jingbo: Quantum data compression by principal component analysis. Quantum Inf. Process. 18(8), 1–20 (2019)

    MathSciNet  ADS  Google Scholar 

  13. Lloyd, Seth, Mohseni, Masoud, Rebentrost, Patrick: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  14. Lin, Jie, Bao, Wan-Su., Zhang, Shuo, Li, Tan, Wang, Xiang: An improved quantum principal component analysis algorithm based on the quantum singular threshold method. Phys. Lett. A 383(24), 2862–2868 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  15. Cong, Iris, Duan, Luming: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18(7), 073011 (2016)

    Article  ADS  Google Scholar 

  16. Harrow, Aram W., Hassidim, Avinatan, Lloyd, Seth: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  17. Duan, Bojia, Yuan, Jiabin, Juan, Xu., Li, Dan: Quantum algorithm and quantum circuit for a-optimal projection: dimensionality reduction. Phys. Rev. A 99(9), 032311 (2019)

    Article  ADS  Google Scholar 

  18. Pan, Shi-Jie., Wan, Lin-Chun., Liu, Hai-Ling., Wang, Qing-Le., Qin, Su-Juan., Wen, Qiao-Yan., Gao, Fei: Improved quantum algorithm for a-optimal projection. Phys. Rev. A 102, 052402 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  19. He, Xi., Sun, Li., Lyu, Chufan, Wang, Xiaoting: Quantum locally linear embedding for nonlinear dimensionality reduction. Quantum Inf. Process. 19(9), 1–21 (2020)

    MathSciNet  Google Scholar 

  20. He, Xiaofei., Niyogi,Partha.: Locality preserving projections. In Advances in neural information processing systems, pages 153–160, 2004

  21. Xiangjie, Hu., Sun, Yanfeng, Gao, Junbin, Yongli, Hu., Yin, Baocai: Locality preserving projection based on f-norm. In Proceedings of the AAAI Conference on Artificial Intelligence 32, 153–160 (2018)

  22. Xiuxiu, Xu., Liang, Jiuzhen, Lv, Sisi, Qin, Wu.: Human facial expression analysis based on image granule lpp. Int. J. Mach. Learn. Cybern. 5(6), 907–921 (2014)

    Article  Google Scholar 

  23. Zhang, Wei, Kang, Peipei, Fang, Xiaozhao, Teng, Luyao, Han, Na.: Joint sparse representation and locality preserving projection for feature extraction. Int. J. Mach. Learn. Cybern. 10(7), 1731–1745 (2019)

    Article  Google Scholar 

  24. Shao, Yu.: Supervised global-locality preserving projection for plant leaf recognition. Comput. Electron. Agri. 158, 102–108 (2019)

    Article  Google Scholar 

  25. Wossnig, Leonard, Zhao, Zhikuan, Prakash, Anupam: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120(5), 050502 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  26. Mitarai, Kosuke, Kitagawa, Masahiro, Fujii, Keisuke: Quantum analog-digital conversion. Phys. Rev. A 99(8), 012301 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We used the part source codes of classical LPP in our numerical simulation, and we are grateful for the authors providing the open-source codes at ’Matlab codes for dimensionality reduction (subspace learning).’ This work is supported by the National Natural Science Foundation of China (61871234) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant KYCX19_0900, KYCX20_0816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengmei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: proof of theorem

Appendix A: proof of theorem

First, we extend matrices \(\mathbf{B} _{1}, \mathbf{B} _{2},...\mathbf{B} _{k},\) to matrices \(\mathbf{B} _{1}', \mathbf{B} _{2}',...\mathbf{B} _{k}',\). The expanded matrices are shown below,

$$\begin{aligned} (\mathbf{B} _{j}')_{2^{q-1}r_{k}\times 2^{q-1}r_{k}}= \begin{pmatrix} (\mathbf{B} _{j})_{r_{j}\times r_{j-1}} &{} {\varvec{0}}_{r_{j}\times (2^{q-1}r_{k}-r_{j-1})}\\ {\varvec{0}}_{(2^{q-1}r_{k}-r_{j})\times r_{j-1}} &{} {\varvec{0}}_{(2^{q-1}r_{k}-r_{j})\times (2^{q-1}r_{k}-r_{j-1})} \end{pmatrix}, \end{aligned}$$
(57)

where \(j=1,2,...k\), \(r_{j}\) represents the number of rows of matrix \(\mathbf{B} _{j}\), \(2^{q-1}r_{k}\ge \max (r_{0}, r_{1}, ..., r_{k})\), q is a positive integer and \(r_0=r_1\).

Then, we extend matrices \(\mathbf{B} _{1}', \mathbf{B} _{2}',...\mathbf{B} _{k}'\) to matrices \(\mathbf{B} _{1}'', \mathbf{B} _{2}'',...\mathbf{B} _{k}''\). The expanded matrices are shown as follows.

$$\begin{aligned} \begin{aligned}&\mathbf{B} _{1}''= \begin{pmatrix} {\varvec{0}}_{2^{q-1}r_{k}\times 2^{q-1}r_{k}} &{} {\varvec{0}}_{2^{q-1}r_{k}\times 2^{q-1}r_{k}}\\ {\varvec{0}}_{2^{q-1}r_{k}\times 2^{q-1}r_{k}} &{} \mathbf{B} _{1}' \end{pmatrix},\\&\mathbf{B} _{2j}''= \begin{pmatrix} {\varvec{0}}_{2^{q-1}r_{k}\times 2^{q-1}r_{k}} &{} \mathbf{B} _{2j}'\\ (\mathbf{B} _{2j}')^{\dagger } &{} {\varvec{0}}_{2^{q-1}r_{k}\times 2^{q-1}r_{k}} \end{pmatrix},\\&\mathbf{B} _{2j+1}''= \begin{pmatrix} {\varvec{0}}_{2^{q-1}r_{k}\times 2^{q-1}r_{k}} &{} (\mathbf{B} _{2j+1}')^{\dagger }\\ \mathbf{B} _{2j+1}' &{} {\varvec{0}}_{2^{q-1}r_{k}\times 2^{q-1}r_{k}} \end{pmatrix}, \end{aligned} \end{aligned}$$
(58)

where \(j=1, 2 ,...[\frac{k+1}{2} ]\), \([\frac{k+1}{2} ]\) is the largest integer less than \(\frac{k+1}{2}\) and \(2j+1\le k\).

When k is even, we have

$$\begin{aligned} \begin{aligned} \mathbf{B} '&= \left[ \mathbf{B} _{k}''... \mathbf{B} _{2}''(\mathbf{B} _{1}'')^{\frac{1}{2} }\right] \left[ \mathbf{B} _{k}''... \mathbf{B} _{2}''(\mathbf{B} _{1}'')^{\frac{1}{2} }\right] ^{\dagger }\\&= \begin{pmatrix} (\mathbf{B} )_{r_{k}\times r_{k}} &{} {\varvec{0}}_{r_{k}\times (2^{q}r_k-r_{k})}\\ {\varvec{0}}_{(2^{q}r_k-r_{k})\times r_{k}} &{} {\varvec{0}}_{(2^{q}r_k-r_{k})\times (2^{q}r_k-r_{k})} \end{pmatrix}\\&= \begin{pmatrix} 1 &{} {\varvec{0}}_{1\times (2^{q}-1)}\\ {\varvec{0}}_{(2^{q}-1)\times 1} &{} {\varvec{0}}_{(2^{q}-1)\times (2^{q}-1)} \end{pmatrix} \otimes \mathbf{B} , \end{aligned} \end{aligned}$$
(59)

otherwise

$$\begin{aligned} \mathbf{B} '= \left[ \mathbf{B} _{k}''... \mathbf{B} _{2}''(\mathbf{B} _{1}'')^{\frac{1}{2} }\right] \left[ \mathbf{B} _{k}''... \mathbf{B} _{2}''(\mathbf{B} _{1}'')^{\frac{1}{2} }\right] ^{\dagger }= \begin{pmatrix} {\varvec{0}}_{(2^{q}-1)\times (2^{q}-1)}&{} {\varvec{0}}_{(2^{q}-1)\times 1}\\ {\varvec{0}}_{1\times (2^{q}-1)} &{} 1 \end{pmatrix} \otimes \mathbf{B} , \end{aligned}$$
(60)

where B denotes \(\left[ \mathbf{B} _{k}... \mathbf{B} _{2}(\mathbf{B} _{1})^{\frac{1}{2}}\right] \left[ \mathbf{B} _{k}... \mathbf{B} _{2}(\mathbf{B} _{1})^{\frac{1}{2}}\right] ^{\dagger }\).

Since \(\mathbf{B} _{1}'', \mathbf{B} _{2}'',...\mathbf{B} _{k}''\) are Hermitian matrices, we can obtain the density matrix proportional to \(\mathbf{B} '\) by using the improved algorithm. Specifically, we use \(\mathbf{A} _{1}=\mathbf{B} _{1}''\), \(f_{1}(\mathbf{A} _{1})= \mathbf{A} _{1}^{\frac{1}{2} }\) and \(\mathbf{A} _{j}=\mathbf{B} _{j}''\), \(f_{j}(\mathbf{A} _{j})= \mathbf{A} _{j}\) for \(j=2, 3,..k\). When k is odd, the density matrix \({\varvec{\rho }}_\mathbf{B '} \) proportional to \(\mathbf{B} '\) is

$$\begin{aligned} {\varvec{\rho }}_\mathbf{B '}=\frac{1}{T} \begin{pmatrix} {\varvec{0}}_{(2^{q}-1)\times (2^{q}-1)} &{} {\varvec{0}}_{(2^{q}-1)\times 1}\\ {\varvec{0}}_{1\times (2^{q}-1)} &{} 1 \end{pmatrix} \otimes \mathbf{B} =\frac{1}{T} (\left| 1 \right\rangle \left\langle 1\right| )^{\otimes q} \otimes \mathbf{B} , \end{aligned}$$
(61)

otherwise

$$\begin{aligned} {\varvec{\rho }}_\mathbf{B '}=\frac{1}{T} \begin{pmatrix} 1 &{} {\varvec{0}}_{1\times (2^{q}-1)}\\ {\varvec{0}}_{(2^{q}-1)\times 1} &{} {\varvec{0}}_{(2^{q}-1)\times (2^{q}-1)} \end{pmatrix} \otimes \mathbf{B} =\frac{1}{T} (\left| 0 \right\rangle \left\langle 0\right| )^{\otimes q} \otimes \mathbf{B} , \end{aligned}$$
(62)

where \(\frac{1}{T}\) is a constant for normalization.

Removing \((\left| 1 \right\rangle \left\langle 1\right| )^{\otimes q}\) from Eq. (61) or removing \((\left| 0 \right\rangle \left\langle 0\right| )^{\otimes q}\) from Eq. (62), one can obtain the density matrix proportional to \(\left[ \mathbf{B} _{k}... \mathbf{B} _{2}{} \mathbf{B} _{1}\right] \left[ \mathbf{B} _{k}... \mathbf{B} _{2}{} \mathbf{B} _{1}\right] ^{\dagger }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, A. & Zhao, S. Quantum locality preserving projection algorithm. Quantum Inf Process 21, 86 (2022). https://doi.org/10.1007/s11128-022-03424-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03424-w

Keywords

Navigation