Abstract
We study steady-state three bipartite entanglements in a cavity magnomechanical system which is composed of magnon, two cavities, and mechanical resonator. The two cavities are connected by an optical fiber, one of cavities couples to the magnon via the magnetic dipole interaction, at the same time, the magnon couples to the mechanical resonator via magnetostrictive interaction. Making use of logarithmic negativity, magnon, cavity, and mechanical resonator are entangled with each other by selecting appropriately the parameter. We find that the steady-state entanglements in the magnon–mechanical resonator subsystem and in the magnon–cavity subsystem are very sensitive to the effective magnomechanical coupling strength. Moreover, the entanglement is robust with respect to the certain environment temperature.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
All data generated or analysed during this study are included in this published article (and its supplementary information files).
References
Vitali, D., Gigan, S., Ferreira, A., Böm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)
Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77, 050307 (2008)
Villanueva, L.G., Schmid, S.: Evidence of surface loss as ubiquitous limiting damping mechanism in SiN micro- and nanomechanical resonators. Phys. Rev. Lett. 113, 227201 (2014)
Zhang, X.F., Zou, C.L., Jiang, L., Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)
Huebl, H., Zollitsch, C.W., Lotze, J., Hocke, F., Greifenstein, M., Marx, A., Gross, R., Goennenwein, S.T.B.: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P.: Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788 (1995)
Jones, J.A., Jaksch, D.D.: Quantum Information. Cambridge University Press, Cambridge (2012)
Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)
Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362, 6412 (2018)
Julsgaard, B., Kozhekin, A., Polzik, E.S.: Experimental long-lived entanglement of two macroscopic objects. Nature (London) 413, 400 (2001)
Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011)
Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled sates using superconducting phase qubits. Nature (London) 467, 570 (2010)
DiCarlo, L., Reed, M.D., Sun, L., Johnson, R.L., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature (London) 467, 574 (2010)
Flurin, E., Roch, N., Mallet, F., Devoret, M.H., Huard, B.: Generating entangled microwave radiation over two transmission lines. Phys. Rev. Lett. 109, 183901 (2012)
Yan, X.B., Deng, Z.J., Tian, X.D., Wu, J.H.: Entanglement optimization of filtered output fields in cavity optomechanics. Opt. Express 27, 24393–24402 (2019)
Yan, X.B.: Enhanced output entanglement with reservoir engineering. Phys. Rev. A 96, 053831 (2017)
Li, J., Zhu, S.Y., Agarwal, G.S.: Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)
Li, J., Li, G., Zippilli, S., Vitali, D., Zhang, T.C.: Enhanced entanglement of two different mechanical resonators via coherent feedback. Phys. Rev. A 95, 043819 (2017)
Kong, C., Xiong, H., Wu, Y.: Magnon-induced nonreciprocity based on the Magnon Kerr effect. Phys. Rev. Appl. 12(3), 034001 (2019)
Zhang, G.Q., You, J.Q.: Higher-order exceptional point in a cavity magnonics system. Phys. Rev. B 99, 054404 (2019)
Wang, B., Liu, Z.X., Kong, C., Xiong, H., Wu, Y.: Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system. Opt. Express 26, 20248–20257 (2018)
Kong, C., Wang, B., Liu, Z.X., Xiong, H., Wu, Y.: Magnetically controllable slow light based on magnetostrictive forces. Opt. Express 27, 5544 (2019)
Liu, Z.X., Xiong, H., Wu, Y.: Magnon blockade in a hybrid ferromagnet-superconductor quantum system. Phys. Rev. B 100, 134421 (2019)
Wang, L., Yang, Z., Liu, Y., Bai, C.H., Wang, D.Y., Zhang, S., Wang, H.F.: Magnon blockade in a PT-symmetric-like cavity magnomechanical system. Ann. Phys. 532, 2000028 (2020)
Yuan, H.Y., Zheng, Shasha, Ficek, Zbigniew, He, Q.Y., Yung, M.H.: Enhancement of magnon-magnon entanglement inside a cavity. Phys. Rev. B 101, 014419 (2020)
Yang, Z.B., Yang, R.C., Liu, H.Y.: Generation of optical-photon-and-magnon entanglement in an optomagnonics-mechanical system. Quantum Inf. Process. 19, 264 (2020)
Xu, W.L., Gao, Y.P., Wang, T.J., Wang, C.: Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system. Opt. Express 28, 22334–22344 (2020)
Gao, Y.P., Cao, C., Duan, Y.W., Liu, X.F., Pang, T.T., Wang, T.J., Wang, C.: Magnons scattering induced photonic chaos in the optomagnonic resonators. Nanophotonics 9, 1953–1961 (2019)
Graf, J., Pfeifer, H., Marquardt, F., Kusminskiy, S.V.: Cavity optomagnonics with magnetic textures: coupling a magnetic vortex to light. Phys. Rev. B 98, 241406 (R) (2018)
Li, J., Zhu, S.Y.: Entangling two magnon modes via magnetostrictive interaction. New J. Phys. 21, 085001 (2019)
Zhang, X.F., Zou, C.L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2, e1501286 (2016)
DeJesus, E.X., Kaufman, C.: Routh–Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288–90 (1987)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, J. Entanglement in a cavity magnomechanical system. Quantum Inf Process 21, 105 (2022). https://doi.org/10.1007/s11128-022-03438-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03438-4