Skip to main content
Log in

Robust semi-quantum private comparison protocols against collective noises with decoherence-free states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Utilizing the advantage of decoherence-free (DF) states, two semi-quantum private comparison (SQPC) protocols against the collective-dephasing noise and collective-rotation noise are proposed, respectively. In the protocols, two semi-quantum parties (i.e. participants with limited quantum capabilities) can compare their secrets with the help of a semi-honest third party (TP). Some common outsider’s and insider’s attacks are also discussed. Moreover, the simulations of our protocols on the IBM Quantum Experience show that our protocols are not only robust under two collective noises, but also feasible under the current quantum technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this submitted article.

References

  1. Yao, A.C.: Protocols for secure computations. FOCS 82, 160–164 (1982)

    MathSciNet  Google Scholar 

  2. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. 111, 23–36 (2001)

  3. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)

    Article  ADS  Google Scholar 

  4. Vallone, G., D’Ambrosio, V., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F., Villoresi, P.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113(6), 060503 (2014)

    Article  ADS  Google Scholar 

  5. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)

    Article  ADS  Google Scholar 

  6. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91(2), 022330 (2015)

    Article  ADS  Google Scholar 

  7. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on bb84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  8. Sun, Z., Zhang, C., Wang, P., Yu, J., Zhang, Y., Long, D.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55(3), 1920–1929 (2016)

    Article  MATH  Google Scholar 

  9. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  11. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with \(W\) state. Opt. Commun. 284(12), 3160–3163 (2011)

    Article  ADS  Google Scholar 

  12. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using \(\chi \)-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography. Quantum Inf. Process. 19(3), 97 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wang, J., Zhang, S., Zhang, Q., Tang, C.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    Article  ADS  Google Scholar 

  19. Zhou, N.-R., Zhu, K.-N., Zou, X.-F.: Multi-party semi-quantum key distribution protocol with four particle cluster states. Annalen der Physik 531, 1800520 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  21. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost dishonest third party. arXiv preprint arXiv:1607.07961 (2016)

  23. Lang, Y.F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18(7), 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. Jiang, L.Z.: Semi-quantum private comparison based on Bell states. Quantum Inf. Process. 19(6), 180 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Xie, L., Li, Q., Yu, F., Lou, X., Zhang, C.: Cryptanalysis and improvement of a semi-quantum private comparison protocol based on Bell states. Quantum Inf. Process. 20, 244 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cai, B., Guo, G., Lin, S., Zuo, H., Yu, C.: Multipartite quantum key agreement over collective noise channels. IEEE Photon. J. 10(1), 1–11 (2018)

    Article  Google Scholar 

  29. He, Y.F., Ma, W.P.: Multiparty quantum secure direct communication immune to collective noise. Quantum Inf. Process. 18(1), 4 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Yang, Y.G., Gao, S., Li, D., Zhou, Y.H., Shi, W.M.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18(7), 215 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12(6), 2191–2205 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Huang, W., Wen, Q., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)

    Article  ADS  Google Scholar 

  33. Chang, C.H., Hwang, T., Gope, P.: An efficient quantum private comparison of equality over collective-noise channels. Int. J Theor. Phys. 55(4), 2125–2138 (2016)

    Article  MATH  Google Scholar 

  34. Zhou, M.K.: Robust multi-party quantum private comparison protocols against the collective noise based on three-qubit entangled states. Int. J. Theor. Phys. 57(10), 2931–2937 (2018)

    Article  MATH  Google Scholar 

  35. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(5), 1850047 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306–3309 (1997)

    Article  ADS  Google Scholar 

  37. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594 (1998)

    Article  ADS  Google Scholar 

  38. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection’’. Phys. Rev. Lett. 101(20), 208901 (2008)

    Article  ADS  Google Scholar 

  39. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  40. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  41. IBM Quantum experience, URL: https://quantum-computing.ibm.com/composer/

  42. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18(4), 108 (2019)

    Article  ADS  MATH  Google Scholar 

  43. Harper, R., Flammia, S.T.: Fault-tolerant logical gates in the IBM quantum experience. Phys. Rev. Lett. 122(8), 080504 (2019)

    Article  ADS  Google Scholar 

  44. Anagha, M., Mohan, A., Muruganandan, T., Behera, B.K., Panigrahi, P.K.: A new scheme of quantum teleportation using highly entangled brown et al. state: an IBM quantum experience. Quantum Inf. Process. 19(5), 147 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  45. Fahmi, A., Golshani, M.: Comment on “Quantum key distribution in the holevo limit’’. Phys. Rev. Lett. 100(1), 018901 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 61772134, 61701553, 61773415, 61672104, 61602536) , Beijing Natural Science Foundation No.4194090, National Defense Science and Technology Innovation Special Zone Project (No. 18-163-11-ZT-002-045-04) and the Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (SKLNST-2018-1-03).We acknowledge the use of IBM Quantum services for this work. The views expressed are those of the authors, and do not reflect the official policy or position of IBM or the IBM Quantum team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng-Yue Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, YH., Jia, HY., Wu, X. et al. Robust semi-quantum private comparison protocols against collective noises with decoherence-free states. Quantum Inf Process 21, 97 (2022). https://doi.org/10.1007/s11128-022-03444-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03444-6

Keywords

Navigation