Skip to main content
Log in

Butterfly network coding based on bidirectional hybrid controlled quantum communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Fusing the ideas of bidirectional hybrid controlled quantum communication and quantum network coding, we put forward a protocol for implementing butterfly network coding by using a five-qubit Brown state as the quantum channel. It shows that each source node could simultaneously teleport an arbitrary unknown single-qubit state to each destination node. Meanwhile, each destination node could remotely prepare an arbitrary known single-qubit state for their corresponding source node. Our protocol not only supports quantum teleportation but also supports remote state preparation. Furthermore, only Pauli operations, single-qubit measurements and Bell state measurements are used in our protocol, which provides great convenience for experimental realization. To the best of our knowledge, it is the first time that a protocol integrates bidirectional hybrid controlled quantum communication and quantum network coding. In this way, our protocol inherits the advantages of network coding, which can encode information on intermediate nodes and solve the bottleneck caused by communication path conflicts between nodes. Finally, we also compare the performance with other protocols. All in all, our protocol greatly expands the application range of quantum network coding, which has good potential to enhance the efficiency of communication in the quantum network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Yoshida, B., Yao, N.Y.: Disentangling scrambling and decoherence via quantum teleportation. Phys. Rev. X. 9(1), 011006 (2018)

    Google Scholar 

  3. Cao, T.B., An, N.B.: Hierarchically controlling quantum teleportations. Quant. Inf. Process. 18(8), 245 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Barasiński, A., et al.: Demonstration of controlled quantum teleportation for discrete variables on linear optical devices. Phys. Rev. Lett. 122(17), 170501 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  5. Podoshvedov, S.A.: Quantum teleportation protocol with an assistant who prepares amplitude modulated unknown qubits. J. Opt. Soc. Am. B Opt. Phys. 35(4), 861–877 (2018)

    Article  ADS  Google Scholar 

  6. Jiao, X.F., Zhou, P., Lv, S.X., et al.: Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Sci. Rep. 9, 4663 (2019)

    Article  ADS  Google Scholar 

  7. Hadiashar, S.B., Nayak, A., Renner, R.: Communication complexity of one-shot remote state preparation. IEEE Trans. Inf. Theor. 64(7), 4709–4728 (2018)

    Article  MathSciNet  Google Scholar 

  8. Pogorzalek, S., Fedorov, K.G., Xu, M., et al.: Secure quantum remote state preparation of squeezed microwave states. Nat. Commun. 10, 2604 (2019)

    Article  ADS  Google Scholar 

  9. Choudhury, B.S., Samanta, S.: An optional remote state preparation protocol for a four-qubit entangled state. Quantum Inf. Process. 18(4), 118 (2019)

    Article  ADS  Google Scholar 

  10. Wang, M., Zheng, Y., Fu, L., Yan, F., Gao, T.: Remote preparation of a general single-photon hybrid state. Res. Phys. 27, 104497 (2021)

    Google Scholar 

  11. Barik, S., Warke, A., Behera, B.K., et al.: Deterministic hierarchical remote state preparation of a two-qubit entangled state using Brown et al state in a noisy environment. IET Quant. Commun. 1(2), 49–54 (2020)

    Article  Google Scholar 

  12. Fang, S.H., Jiang, M., et al.: A novel protocol for bidirectional and hybrid quantum information transmission via a seven-qubit state. Int. J. Theor. Phys. 57(2), 523–532 (2018)

    Article  Google Scholar 

  13. Jiang, S.X., et al.: Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. IEEE Access. 7, 80530–80541 (2019)

    Article  Google Scholar 

  14. Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)

    Article  Google Scholar 

  15. Peng, C., et al.: Protocols for hybrid bidirectional controlled quantum communication via multi-qubit entangled states. IEEE Trans. Int. Theor. 57(2), 443–452 (2018)

    MATH  Google Scholar 

  16. Gong, L., Li, X., Ma, S.: Bidirectional hybrid controlled quantum communication under noisy environment. Inter. J. Theor. Phys. 58(11), 3734–3745 (2019)

    Article  MathSciNet  Google Scholar 

  17. Sun, Y.R., et al.: A universal protocol for controlled bidirectional quantum state transmission. Quant. Inf. Process. 18(9), 281 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Sun, Y.R., Chen, X.B., Xu, G., et al.: Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state. Sci. Rep. 9, 2081 (2019)

    Article  ADS  Google Scholar 

  19. Sun, Y.R., Chen, X.B., Xu, G., et al.: Asymmetric controlled bidirectional remote preparation of single- and three-qubit equatorial state in noisy environment. IEEE Access 7, 2811–2822 (2019)

    Article  Google Scholar 

  20. Deutsch, D.: Quantum computational networks. Proc. R. Soc. London. Ser. A. 425(1868), 73–90 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  21. Yun, J.Y., Ashutosh, R., et al.: Nonlocal network coding in interference channels. Phys. Rev. Lett. 125(15), 150502 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Liu, R., et al.: Quantum network coding utilizing quantum discord resource fully. Quant. Inf. Process. 19(2), 58 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Nguyen, H.V., et al.: Towards the quantum internet: Generalised quantum network coding for large-scale quantum communication networks. IEEE Access. 5(1), 7288–17308 (2019)

    Google Scholar 

  24. Hayashi, M., et al.: Quantum network coding. J. Comput. Sci. 4393, 610–621 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A. 76(4), 1–5 (2007)

    Article  MathSciNet  Google Scholar 

  26. Steven, H.: Increasing the classical data throughput in quantum networks by combining quantum linear network coding with superdense coding. Phys. Rev. A. 101(6), 062332 (2020)

    Article  MathSciNet  Google Scholar 

  27. Chen, X., Zhou, R.G., Li, X., et al.: Controllable quantum network coding scheme based on quantum walk. Int J Theor. Phys. 60, 3363–3374 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Pan, X.B., et al.: Quantum network coding without loss of information. Quant. Inf. Process. 20(2), 1–31 (2021)

    MathSciNet  Google Scholar 

  29. Yun, J., Rai, A., Bae, J.: Nonlocal network coding in interference channels. Phys. Rev. Lett. 125(15), 150502 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lu, H., Li, Z., Yin, X., et al.: Experimental quantum network coding. Quant. Inf. 5(1), 89 (2019)

    Article  Google Scholar 

  31. Brown, I., et al.: Searching for highly entangled multi-qubit states. J. Phys. A: Math. Gen. 38(5), 1119–1131 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  32. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A. 376(45), 2944–2950 (2012)

    Article  ADS  Google Scholar 

  33. Jiang, M., Zhang, S., Ding, M.X.: Quantum network coding based on remote state preparation of arbitrary two-qubit states, Chinese Control Conference (CCC). 9757–9760 (2017)

  34. Yang, Y.Q., Zhang, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55(10), 4197–4204 (2016)

    Article  Google Scholar 

  35. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quant. Inf. Process. 14(11), 4263–4278 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. Sang, Z.W., et al.: Cyclic controlled joint remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 5(1), 255–260 (2019)

    Article  Google Scholar 

  37. Arenz, C., Rabitz, H.: Drawing together control landscape and tomography principles. Phys. Rev. A 102(4), 042207 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. Kuang, S., Li, G., Liu, Y., Sun, X. and Cong, S.: Rapid feedback stabilization of quantum systems with application to preparation of multiqubit entangled states. IEEE Trans. Cyber. 2168–2275 (2021)

  39. Wu, R.B., Cao, X., Xie, P., Liu, Y.X.: End-to-end quantum machine learning implemented with controlled quantum dynamics. Phys. Rev. A. 14(6), 064020 (2020)

    Article  Google Scholar 

  40. Xue, S., Tan, L., Wu, R., Jiang, M., Petersen, I.R.: Inverse-system method for identification of damping rate functions in non-Markovian quantum system. Phys. Rev. A 102(04), 042227 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Tang Scholar Project of Soochow University, the National Natural Science Foundation of China under Grant 61873162 and Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network and Suzhou Key Laboratory of Advanced Optical Communication Network Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jh., Jiang, M. Butterfly network coding based on bidirectional hybrid controlled quantum communication. Quantum Inf Process 21, 107 (2022). https://doi.org/10.1007/s11128-022-03447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03447-3

Keywords

Navigation