Skip to main content
Log in

Measurement-device-independent quantum secure multiparty summation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we define two specific secure multiparty summations and further present the corresponding measurement-device-independent quantum secure multiparty summation protocols, in which each party with a private input only performs simple single-particle operators, not any complex quantum measurements. The proposed protocols not only achieve the information-theoretical security, but also ensure the good feasibility and the high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Yang, Y.G., Wang, Y.C., Yang, Y.L., et al.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. China-Phys. Mech. Astron. 64(6), 260321 (2021)

    Article  ADS  Google Scholar 

  2. Shi, R.H., Mu, Y., Zhong, H., Zhang, S., Cui, J.: Quantum private set intersection cardinality and its application to anonymous authentication. Inform. Sci. 370–371, 147–158 (2016)

    Article  Google Scholar 

  3. Kiktenko, E.O., Pozhar, N.O., Anufriev, M.N., et al.: Quantum-secured blockchain. Quantum Sci Technol 3, 035004 (2018)

    Article  ADS  Google Scholar 

  4. Shi, R.H., Zhang, M.: Privacy-preserving quantum sealed-bid auction based on grover’s search algorithm. Sci. Rep. 9, 7626 (2019)

    Article  ADS  Google Scholar 

  5. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  6. Chen S.Y., Yoo S.: Federated Quantum Machine Learning, arXiv:math/2103.12010, (2021)

  7. Du, J.Z., Chen, X.B., Wen, Q.X., Zhu, F.C.: Secure multiparty quantum summation. Acta Physica Sinica 56(11), 6214–6219 (2007)

    Article  MathSciNet  Google Scholar 

  8. Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int J Theor Phys. 49(11), 2793–2804 (2010)

    Article  MathSciNet  Google Scholar 

  9. Zhang, C., Sun, Z.W., Huang, Y., Long, D.Y.: High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 53(3), 933–941 (2014)

    Article  Google Scholar 

  10. Zhang, C., Sun, Z.W., Huang, X.: Three-party quantum summation without a trusted third party. Int. J. Quantum Inf. 13(2), 1550011 (2015)

    Article  MathSciNet  Google Scholar 

  11. Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)

    Article  ADS  Google Scholar 

  12. Zhang, C., Situ, H.Z., Huang, Q., Yang, P.: Multi-party quantum summation without a trusted third party based on single particles. Int. J. Quantum Inf. 15(2), 1750010 (2017)

    Article  MathSciNet  Google Scholar 

  13. Shi, R.H., Zhang, S.: Quantum solution to a class of two-party private summation problems. Quantum Inf Process 16, 225 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Yang, H.Y., Ye, T.Y.: Secure multi-party quantum summation based on quantum Fourier transform. Quantum Inf Process 17, 129 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lo, H.-K., Curty, M., Qi, B.: Measurement device independent quantum key distribution”. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  16. Xu, F., Qi, B., Liao, Z., Lo, H.-K.: Long distance measurement-device-independent quantum key distribution with entangled photon sources. Appl. Phys. Lett. 103, 061101 (2013)

    Article  ADS  Google Scholar 

  17. Xu, F., Curty, M., Qi, B., Lo, H.-K.: Measurement-device-independent quantum cryptography. IEEE J. Sel. Top. Quantum Electron. 21(3), 6601111 (2014)

    Google Scholar 

  18. Nielsen M.A., & Chuang I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press. (2011)

  19. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)

    Article  ADS  Google Scholar 

  20. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  21. Shi, R.H.: Anonymous quantum sealed-bid auction. IEEE Trans. Circuits Syst. II: Exp. Briefs (Early Access) (2021). https://doi.org/10.1109/TCSII.2021.3098755

    Article  Google Scholar 

  22. Shi, R.H.: Useful equations about bell states and their applications to quantum secret sharing. IEEE Commun. Lett. 24(2), 386–390 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61772001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Hua Shi.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, RH., Liu, B. & Zhang, M. Measurement-device-independent quantum secure multiparty summation. Quantum Inf Process 21, 122 (2022). https://doi.org/10.1007/s11128-022-03454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03454-4

Keywords

Navigation